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ABSTRACT 
 

This paper presents a new representation of skeleton sequences for 3D action recognition. Existing methods 

based on hand-crafted features or recurrent neural networks cannot adequately capture the complex spatial 

structures and the long term temporal dynamics of the skeleton sequences, which are very important to 

recognize the actions. In this paper, we propose to transform each channel of the 3D coordinates of a skeleton 

sequence into a clip. Each frame of the generated clip represents the temporal information of the entire 

skeleton sequence, and one particular spatial relationship between the skeleton joints. The entire clip 

incorporates multiple frames with different spatial relationships, which provide useful spatial structural 

information of the human skeleton. We also propose a Multi-task Learning Network (MTLN) to learn the 

generated clips for action recognition. The proposed MTLN processes all the frames of the generated clips in 

parallel to explore the spatial and temporal information of the skeleton sequences. The proposed method has 

been extensively tested on challenging benchmark datasets. Experimental results consistently demonstrate the 

superiority of the proposed learning method for 3D action recognition compared to existing techniques. 

 

I. INTRODUCTION 

 

Human action recognition has a wide range of 

applications, including video surveillance, human-

machine interaction and robot control [1]. Nowadays 

due to the prevalence of highly-accurate and 

affordable depth devices, there are more and more 

works using depth videos for computer vision tasks [2], 

[3], [4], [5]. Action recognition based on 3D skeleton 

sequences has also been attracting increasing attention 

[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]. 

Compared to RGB videos, skeleton data is more robust 

to cluttered backgrounds and illumination changes 

[17], with human actions described as movements of 

the skeleton joints [18]. To recognize an action from a 

skeleton sequence, the temporal dynamics of the 

skeleton sequence and the spatial structure among the 

joints need to be exploited for a good understanding of 

the action class [10]. Hidden Markov Models 

 

(HMMs) [19], [20], Conditional Random Fields (CRFs) 

[21] and Temporal Pyramids (TPs) [7], [22] have been 

used to model the temporal structure of a sequence. 

To exploit the spatial structure among the joints, 

various features have been investigated, such as 

histogram of joint positions [6], pairwise relative 

position [22] and 3D rotation and translation [7]. 

These traditional models are based on hand-crafted 

features, which cannot effectively capture the long-

term temporal structure and the discriminant spatial 

information of the skeleton sequence [8]. Recently, 

recurrent neural networks (RNNs) with LongShort 

Term Memory (LSTM) neurons [23], [24] have also 

been used to model the spatial and temporal 

information of skeleton sequences for action 
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recognition [8], [25], [10], [9], [11]. LSTM networks 

operate the input sequentially and return an output at 

each timestep. Human actions are generally very 

complex with many timesteps. The earlier timesteps 

of an action sequence might contain ambiguous sub-

actions and the context of the entire sequence needs 

to be learned to accurately recognize the action. 

Although LSTM networks are designed to explore the 

problem of long-term temporal dependency, they are 

incapable of memorizing the information of an entire 

sequence with many timesteps [26], [27]. Besides, it is 

also difficult to construct deep LSTM networks to 

learn high-level features [28], [29]. 

 

In order to learn the long-term temporal information 

and the complex spatial information of the skeleton 

sequences for action recognition, in this paper, we 

transform each skeleton sequence into three clips. 

Each clip consists of only a few frame images, as 

shown in Figure 1. 

                
Figure  1. A skeleton sequence of an arbitrary length t 

is transformed into three clips 

 

We propose to change every skeleton succession to 

another portrayal, i.e., three clips, to permit 

worldwide long haul fleeting demonstrating of the 

skeleton grouping by utilizing profound CNNs to take 

in progressive highlights from outline pictures. (31) 

We acquaint a MTLN among the procedure; the entire 

CNN highlights of the boundaries in conveyed cuts, 

during this manner take the spatial formation as well 

as the provisional information of the skeleton 

gathering. 

 

The MTLN enhances the execution by using inherent 

connections among various frames of the created clips. 

Our test results come about show that MTLN 

performs superior to connecting or then again pooling 

the highlights of the housings. [32] The proposed 

approach accomplishes the best in class execution on 

three skeleton datasets.  

 

II. RELATED WORKS 

 

In this section, we briefly review relevant literature 

on skeleton-based action recognition methods using 

hand-crafted features and using deep learning 

networks. Hand-crafted Features Traditional methods 

extract handcrafted features and utilize sequential 

models to represent the spatial temporal information 

of the skeleton sequences. Xia et al. [6] computed 

histograms of 3D joint locations (HOJ3D) to represent 

each frame of the skeleton sequences, and used 

discrete hidden Markov models (HMMs) to model the 

temporal dynamics.  

 

Wang et al. [45] represented actions with the 

histogram of spatial-part-sets and temporal-part-sets, 

which are constructed from a part pose dictionary. 

Chaudhry et al. [46] used a set of Linear Dynamical 

Systems (LDSs) to encode a hierarchy of spatial 

temporal information of the 3D skeleton data, and 

performed action recognition using discriminative 

metric learning. Vemulapalli et al. [7] used the 3D 

rotations and translations between various body parts 

as a representation, and modeled the skeleton 

sequence as a curve in the Lie group. Lv et al. [19] 

extracted a set of features corresponding to the motion 

of an individual joint or multiple joints, and used 

HMM to model the temporal dynamics. Wu et al. [20] 

concatenated the posture motion and the offset 

features as representation, and estimated the emission 

probability for action inference using a deep neural 

network. 
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Hussein et al. [47] computed the covariance matrices 

of the trajectories of the joint positions over 

hierarchical temporal levels to model the skeleton 

sequences. Wang et al. [22] computed the pairwise 

relative positions of each joint with other joints to 

represent each frame of the skeleton sequences, and 

used Fourier Temporal Pyramid (FTP) to model the 

temporal patterns. Yang et al also used the pairwise 

relative positions of the joints to characterize the 

posture features, the motion features, and the offset 

features of the skeleton sequences, and applied 

Principal Component Analysis (PCA) to the 

normalized features to compute EigenJoints as 

representations. These traditional methods are based 

on handcrafted features, which are not powerful 

enough to extract discriminant spatial temporal 

information from the skeleton sequences for action 

recognition. 

 

Liu et al. [11] designed a spatial temporal LSTM with a 

Trust Gate to jointly learn both the spatial and 

temporal information of skeleton sequences and to 

automatically remove noisy joints. Although LSTM 

networks are designed to explore long-term temporal 

dependencies, it is still difficult for LSTM to memorize 

the information of the entire sequence with many 

timesteps [26], [27]. In addition, it is also difficult to 

construct deep LSTM to extract highlevel features [28], 

[29]. In contrast to LSTM, CNNs can extract such 

high-level features, but do not have the capacity to 

model the long-term temporal dependency of the 

entire video [50]. 

 

III. PROPOSED SYSTEM 

 

To resolve this problem, we propose to transform the 

skeleton sequences into clips, which allows for the 

spatial and temporal information learning of the 

skeleton sequences based on CNNs. More specifically, 

we propose a novel MTLN to exploit the intrinsic 

relationships among different frames of the clips for 

action recognition. The classification of each frame is 

treated as a separate task.  

MTLN jointly learns multiple tasks of classification, 

and then outputs multiple predictions. Each 

prediction corresponds to one task. The labels of all 

the tasks are the same as the action label of the 

skeleton sequence. During training, the loss value of 

each task is individually computed using its respective 

class scores. The network parameters are learned using 

the total loss that is defined by the sum of the loss 

values of all tasks.  

 

During testing, the class scores of all tasks are 

averaged to form the final prediction of the action 

class. The proposed method captures both the 

temporal and the spatial structural information of the 

skeleton sequences and also makes the representation 

more robust to view variations. MTLN explores both 

the spatial and temporal information of the skeleton 

sequence from the generated clips for action 

recognition. In our experiments, we compare the 

proposed method with other methods. We also 

compare the multitask learning of the clips with the 

single-task learning of an individual frame, as well as 

feature concatenation and pooling methods of 

multiple frames, to show the advantages of the 

proposed clip representation and learning method. 

 

 

IV.  CLIP GENERATION 

 

Instead of frame images, skeleton sequences only 

provide the 3D trajectories of the skeleton joints. In 

this section, we introduce two different methods of 

transforming the skeleton sequences to a set of clips. 

Each clip consists of several images to allow for spatial 

temporal feature learning based on deep CNNs. More 

specifically, for each skeleton sequence, both methods 

generate three clips. Each clip corresponds to one 

channel of the 3D coordinates of the skeleton joints. 

Each frame of the clips includes the information of 

one particular spatial relationship between the 
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skeleton joints and the temporal information of the 

entire sequence. Each clip aggregates multiple frames 

with different spatial relationships, which provides 

important information of the spatial structure of the 

joints 

                         
Figure 2.  structural design of the future system. 

particular skeleton series (a), three clips (b) related 

toward the three channels of the cylindrical 

coordinates are generated. 

 

A important approved CNN show (c) and a transient 

mean pooling layer (d) are utilized to separate a 

reduced interpretation from each edge of the clips. 

The amount produce CNN interpretations of the three 

clips in the meantime step are connect together, 

coming about four component vectors (e). Every part 

vector tests to the transient data of the skeleton 

association and a difficult spatial connection of the 

skeleton joints.  

 

The proposed MTLN (f) which joins a totally linked 

(FC) layer, a redressed instantly unit (ReLU), a 

different FC layer and a Soft max layer normally 

shapes the four section vectors in equivalent and 

yields four blueprints of set scores (g), each 

identifying with one endeavor of portrayal using one 

component vector. Times of introduction, the 

difficulty estimations of the four assignments are 

demonstrated portray the misfortune estimation of the 

framework used to revive the formation parameters. 

For taxing the set scores of the four coursework are 

inwards at the average  to express the previous 

calculation of the expansion class. 

 

The robust and invariant transient data of the first 

skeleton arrangement could be caught with the 

capable CNN representations gained from each casing 

picture. The instance route of movement of each joint 

of a skeleton interest group can be tended to as three 

1D bring to light regions appearing in a different way 

relation to the three channels of the 3D Cartesian 

headings (x, y,and z). 

  {            }          

wherever m is the measure of the skeleton joints, and 

qi = [xi; yi; zi] speaks to the 3D facilitate of the ith 

joint. 

 

To change Where m is the quantity of the skeleton 

joints, and qi = [xi; yi; zi] speaks to the 3D facilitate of 

the ith joint. line measurement in a successive inquire. 

The four reference joints are perused four body parts, 

particularly, the left shoulder, the correct shoulder, 

the left hip and the correct hip. 

 

For each reference joint, a course of action of vectors 

can be controlled by enlisting the qualification of 

bearings between the reference joint and alternate 

joints. Each arrangement of vectors mirrors specific 

spatial connections between the joints. 

Let the reference joint be 

   
  [  

   
   

 ]         , and define 

   {    
               }          

      Where Vk is the set of the vectors of the kth 

reference joint in one frame. 

 

V.  CLIP LEARNING 

 

 

The three CNN highlights of the three fastens in the 

mean time step are associated in a section vector, 

which verbalizes to the concise data of the skeleton 

movement and one specific spatial relationship 

between the skeleton joints in three channels  tube 
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shaped directions. At that point the element vectors 

ever steps are together handled in parallel utilizing 

multi-undertaking adapting, in this way to use their 

inborn connections for activity response. 

Give the enactment at the I th a chance to push and 

the j th fragment of the k th feature direct be x i,jk. 

After transient mean pooling, the yield of the kth 

highlight outline given by 

   [  
     

      
 ] 

OR 

  
  

 

 
∑            

    
                                        (3) 

 

1.3.3 Multi-Task Learning Network: 

Multi-Task Learning Network is then proposed to 

mutually process the four element vectors to use their 

natural connections for activity acknowledgment. The 

characterization of each component vector is dealt 

with as a different assignment with a similar grouping 

name of the skeleton succession. 

 

i. During training, the class scores of each task are 

used to compute a loss value.  

         ∑   
 
         (

      

∑       
 
   

)(4) 

 

= ∑   
 
   (   ∑       

 
   )      

 

Where zk is the vector fed to the Softmax layer 

generated from the kth  input feature, m is the amount 

of action classes and yi is the ground-truth label for 

class i. 

 

ii. Then the loss values of all tasks are summed up to 

generate the final loss of the network used to update 

the network parameters.  

 

 

 

 

 

 

VI.  RESULTS 

 

 
 Figure 3. Input Image 

 
Figure 4.  Extracted feature of relative joint positions 

 

 
Figure 5. Warped Feature matrix 
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Figure 6. Fourier spectrum 

 
Figure 7. Predicted action 

 

Table 1. Comparison table for different methods 

Method Accuracy Sensitivity Specificity 

DRNN 73.9051 77.2302 78.2121 

Uni-

directional 

85.7011 82.3212 80.4567 

Bi-

directional 

86.9317 83.8361 83.9317 

MTLN 93.4237 87.2398 85.6127 

 

VII. CONCLUSION 

 

In this paper, we have proposed to transform a 

skeleton sequence into three clips for robust feature 

learning and action recognition. Each frame of the 

generated clips depicts the temporal information of 

the skeleton sequence. The entire clips incorporate 

different spatial relationships between the joints and 

provide useful spatial structural information of the 

skeleton sequence. The generated clips are then 

processed with an MTLN to capture both the spatial 

and temporal information for action recognition. 

MTLN learns the clips in a multi-task learning 

manner in order to utilize the intrinsic relationships 

between the clip frames. This improves the 

performance (compared to the concatenation or the 

pooling methods). We have tested the proposed 

method on datasets and have compared it to previous 

state-of-the-art methods and several baselines. 

Experimental results have shown the effectiveness of 

the proposed new representation and feature learning 

method. 
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