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ABSTRACT 
 

Mesh free (MF) methods are among the breed of numerical analysis technique that are being vigorously developed 

to avoid the drawbacks that traditional methods like Finite Element method (FEM) possess. The Element Free 

Galerkin (EFG) method is a meshless method in which only a set of nodes and a description of model’s boundary 

are required to generate the discrete equations. EFG approach is based on global weak form of governing 

differential equation and employs Moving Least Square (MLS) approximants to construct shape functions. While 

deriving solution with EFG, following selectable parameters affect solution accuracy and computational efforts: 

Order of monomial basis function and weight function selection in MLS approximants, size of influence domain, 

uniform and non uniform node distribution, number of Gauss points in integration cells. The computational 

performance of meshfree Moving Least Squares technique when solving the Galerkin weak form of one-

dimensional elastic problem is tested against exact analytical solution and mesh-based Finite Element Method. In 

the present paper, selectable parameters are studied to check its influence on solution accuracy in EFG and suggest 

near optimal selection. Finally, when EFG results are compared with standard FEM solution, it is found that EFG 

displacements are more accurate than FEM. 

Keywords: EFG, MLS Shape Functions, Weight Functions, Meshfree, Matlab, Monomial Basis, Size Of Influence 

Domain. 

 

I. INTRODUCTION 

 

The development of the finite element method (FEM) in 

the 1950s was one of the most important advances in the 

field of numerical methods. The FEM is a robust and 

thoroughly developed method, and hence it is widely 

used in engineering fields due to its versatility for 

complex geometry and flexibility for many types of 

linear and non-linear problems. This mesh based 

numerical methods (FEM, FDM, CFD etc.) despite of 

great success; suffer from difficulties in some aspects, 

which limit their applications in many complex 

problems such as crack propagation, problems with 

phase change, large-strain deformations, etc. [1]  

 

In recent years, meshless methods have been developed 

as alternative numerical approaches in efforts to 

eliminate known drawbacks of the finite element method 

(FEM). The nature of the various approximation 

functions employed by meshless methods allows the 

descretization or redescretization of problem domains by 

simply adding or deleting nodes where desired. Nodal 

connectivity to form an element as in FEM method is 

not needed, only nodal coordinates and their domain of 

influence (dmax) are necessary to discretize the problem 

domain. Meshless methods may also reduce other 

problems associated with the FEM, such as solution 

degradation due to locking and severe element distortion 

[1]. There are several meshless methods under current 

development, including the Element-Free Galerkin (EFG) 

method proposed by Belytschko, the Reproducing 

Kernel Particle Method (RKPM) proposed by Liu, 

Smooth Particle Hydrodynamics (SPH) method 

proposed by Gingold and Monaghan, Meshless Local 

Petrov-Galerkin (MLPG) method proposed by Atluri, 

and some other methods [3, 5]. The well-establish EFG 
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method use shape functions which are derived from 

moving least square (MLS) approximation. In 1981, 

Lancaster and Salkauskas formulated the Moving Least 

square approach [Lancaster, 1981]. Nayroles et al (1992) 

first used it for meshfree approximation and the idea was 

further formulated into EFGM framework by Belytschko 

et al (1994). MLS involves the assumption of the field 

variable as a summation of series of monomials. The 

coefficients of the monomials are the unknowns and are 

calculated such that the squared sum of errors in the 

domain of a point is minimal. Once the approximation at 

a point is over, the MLS is ‘moved’ to another point. 

This paper evaluates effect of each selectable significant 

parameters on EFG solution individually, which 

includes monomial basis order and weight function 

selection in MLS approximants, size of influence 

domain, uniform and non-uniform node distribution, 

number of Gauss points in integration cells. 

 

II. METHODS AND MATERIAL 
 

2. EFG FORMULATION: 

 

An axially loaded bar [2] problem is selected for 

detailed study of selectable parameters in EFG. 

Considering one dimensional unit length and unit area 

bar subjected to linear body force which is fixed at one 

end and free to deform at the other as shown in Figure 1. 

 

 
Figure 1: Axially loaded bar 

 
Figure 2. Bar with node and integration cell 

 

The bar geometry is defined with eleven uniformly 

spaced nodes, as shown in figure 2. 

   ( )u x ≈ û (x) = 
1

( ) ( ) ( ) ( )
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Where, P
T
 (x) is monomial basis functions of order m 

and a(x) are vector coefficients. 

 

The choice of the polynomial function is depends upon 

the basis and is decided by the Pascal’s triangle. For 

example, for 1-D problems, 

 

 
 

Consider a displacement function u(x) of a field variable 

defined on the domain Ω, the MLS approximant û (x) of 

the function u(x) can be represented as, 

 

The unknown parameters a(x) at any given point are 

determined by minimizing the difference between the 

local approximation at that point and the nodal 

parameters ui. Let the nodes whose supports include x be 

given local node numbers 1 to n. In order to determine 

the unknown coefficients a, a functional J is constructed. 

It sum up the weighted quadratic error for all nodes 

inside the support domain as 

 
 

Where n is the number of nodes in the neighbourhood of 

x for which the weight function, W(x — xi) ≠ 0, and ui 

refers to the nodal parameter of u at x = xi.  

 

We want to minimize this functional, so we differentiate 

with respect to the unknown vector a(x), containing the 

coefficient, 

                                    

J

a




= 0 

Which results in the following compact matrix form 

as,  

         ( ) ( ) ( )A x a x B x u     
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By inserting this expression, we get a new formulation 

of the displacement field, 

                               

 
Where, the shape function is defined by,

                         
1 1

1

( ) ( )( ( ) ( ))
n
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A set of discrete system equations is generated on the 

basis of Galerkin weak form of governing differential 

equation [2]. Following weak form is used for deriving 

system equations. Presently, Lagrange multiplier 

technique is employed for imposing EBCs. 

 

 
 

Where, Γu and Γt are essential and natural boundaries 

respectively [2, 3]. Discrete equations can be obtained 

by substituting trial (shape) and test (weight) functions 

in the above weak form. For EFG, test functions are 

selected as approximating functions, δv = u and final 

form of linear algebraic equation will be, 
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In which, K is the stiffness matrix, G is the boundary 

condition matrix, u is the nodal displacements vector, λ 

is the Lagrange multipliers, f is the force vector and q is 

a boundary condition vector, and E  is Young's modulus. 

 

 3. Weight Functions 

 

The weights functions like cubic weight function, 

quartic weight, exponential weight etc, perform two 

actions, one as a medium of imparting smoothness or 

desired continuity to the approximation and other one, 

more important, is the establishment of the local nature 

of the approximation [1]. The weight functions chosen 

for construction of shape function are as follows: 

 

 
 

Where, s= |x-xI|/dmax and, dmax is the size of the support 

for weight function wi and determines support of node xi. 

The size of support, dmax, of the weight function wi 

associated with node i should be chosen such that dmax 

should be large enough to have sufficient number of 

nodes covered in the domain of definition of every 

sample point to ensure the regularity of matrices. 

 

III. RESULT AND DISCUSSION 
 

The bar problem formulated above, is studied in detail with the help of MATLAB program. The computational 

performance of EFG method is compared with different significant parameter as discussed below. 

 

4.1 Weight Function and Nodal Distribution: 

 

The choice of weight function plays an important role in meshfree solution. Some of the frequently used functions 

are: Cubic spline, quartic spline, exponential etc as defined in section 3. For one dimensional bar problem discussed 

above, all these weight functions are implemented in the solution and the results for displacements (d) are obtained 

and compared with exact solution obtained. They are tabulated and plotted below. 
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(A) Regular nodal distribution: 

 

Table 1. Comparison of different weight functions for displacement 

 

Sr. No. 1 2 3 4 5 6 7 8 9 10 11 

Node 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

u exact 0 0.0498 0.0987 0.1455 0.1893 0.2292 0.264 0.2928 0.3147 0.3285 0.3333 

u efg-cubic 

spline 
0 0.0509 0.0986 0.1458 0.1897 0.2296 0.2645 0.2934 0.3153 0.3295 0.3324 

u efg-

exponential 
0 0.0498 0.0985 0.1453 0.1891 0.2288 0.2636 0.2924 0.3141 0.3279 0.3325 

u efg-quartic 

spline 
0 0.0526 0.0981 0.1463 0.1899 0.23 0.2649 0.2939 0.3157 0.3304 0.3324 

 

 
 

Figure 3: displacement for cubic spline 

 

 

Figure 4 : displacement for exponential 
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Figure 5 : displacements for quartic spline 

 

(B) Irregular Nodal Distribution 

 

Table 2. Comparison of different weight functions for displacement 

 

Sr. No. 1 2 3 4 5 6 7 8 9 10 

Node 0 0.12 0.23 0.31 0.42 0.51 0.65 0.78 0.87 1 

u exact 0 0.0597 0.113 0.15 0.1977 0.2329 0.2792 0.3109 0.3252 0.3333 

u efg-cubic spline 0 0.0625 0.121 0.142 0.2097 0.2255 0.2877 0.3141 0.3314 0.3348 

u efg-exponential 0 0.0679 0.1235 0.1496 0.2097 0.2369 0.2943 0.3192 0.3307 0.3392 

u efg-quartic  0 0.0639 0.1208 0.1428 0.2114 0.2229 0.2876 0.3129 0.3326 0.3342 

 

4.2 Size of support domain: 

 

The size of the support domain dmax of the weight function associated to the desired point must be chosen big 

enough so that the number of points covered by the influence domain guarantees the regularity of matrix A. Very 

small values can generate big errors when numerical integration based on Gaussian quadrature is used to calculate 

the array elements of the matrix. On the other hand, dmax should be small enough to maintain the local characteristics 

for the approximation by MLS [5]. 

 

Optimum value of domain of influence parameter for end node for different weight function and nodal distribution 

along the bar are obtained using one point gauss quadrature integration method in MATLAB platform. 

 

Table 3. optimum value of dmax  

Parameter 
Cubic 

spline 
Exponential Quartic spline 

Regular node distribution 2.55 3.5 2.27 

Irregular node distribution 2.25 3.05 2.09 

 

4.3 Order of monomial basis: 

 

Consistency of MLS shape function is controlled by the order of monomial basis (m) function selected for the 

solution. While constructing MLS shape functions in EFG, order of monomial basis function, P
T 

(x) considered is 

linear (m=2) and quadratic (m=3) with cubic spline weight function at optimal value of support domain parameter.   
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Table 4. Effect of Monomial Basis Order (M) 

 

Node 
Exact 

solution m=1 m=2 

0.1 0.050 0.0497 0.0498 

0.2 0.099 0.0985 0.0988 

0.3 0.146 0.1452 0.1456 

0.4 0.189 0.189 0.1895 

0.5 0.229 0.2287 0.2294 

0.6 0.264 0.2635 0.2643 

0.7 0.293 0.2922 0.2931 

0.8 0.315 0.314 0.315 

0.9 0.329 0.3277 0.3295 

1 0.333 0.3325 0.3325 

 

 

4.4 Gauss Quadrature Integration: 

 

Integration cells and number of gauss points are defined over the domain of problem; and it is set by intervals 

between nodes. High order Gauss quadrature improves solution accuracy but significantly increases the 

computational efforts. Table 4 shows the effect of 1 point and 2 point gauss quadrature integration for cubic spline 

weight function with exact solution. 

 

Table 4. Effect of Gauss point 

 

Node 
Exact 

solution 

1 Gauss 

point 

2 Gauss 

point 

0.1 0.050 0.050 0.050 

0.2 0.099 0.099 0.099 

0.3 0.146 0.145 0.146 

0.4 0.189 0.189 0.189 

0.5 0.229 0.229 0.229 

0.6 0.264 0.264 0.264 

0.7 0.293 0.292 0.293 

0.8 0.315 0.314 0.315 

0.9 0.329 0.328 0.329 

1 0.333 0.333 0.333 

 

4.5 Comparison of results with FEM: 

 

To check accuracy of EFG technique, EFG results are compared with FEM and exact solution. The bar geometry is 

discretized with ten simple line elements and linear shape functions are used. Displacement values at nodes are 

calculated with cubic spline weight function. EFG has produced better results than FEM. 
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Table 5 Comparison of EFG with FEM and Analytical Solution 

 

Nod no. MF Actual fem 

1 0 0 0 

2 0.0509 0.0498 0.0478 

3 0.0986 0.0987 0.0947 

4 0.1458 0.1455 0.1397 

5 0.1897 0.1893 0.1818 

6 0.2296 0.2292 0.2200 

7 0.2645 0.264 0.2534 

8 0.2934 0.2928 0.2811 

9 0.3153 0.3147 0.3021 

10 0.3295 0.3285 0.3154 

11 0.3324 0.3333 0.3200 

 

 

Figure 6: Comparative Displacement 

 

IV. CONCLUSION 
 

The meshless methods described in this paper are 

especially well-suited for linear elastic problems. 

Since standard mesh less methods do not fulfil the 

so-called Kronecker–Delta property, essential 

boundary conditions cannot be enforced as easily as 

in finite element methods and Lagrange multiplier 

method. An element free Galerkin (EFG) method 

was implemented in MATLAB for linear elastic 

problem. The solution by this method seems 

accurate enough and converges to the analytical 

solution. The EFG method is flexible with respect 

to the construction of the shape functions. 

Therefore, it is possible to improve the accuracy of 

the method by the choice of weight functions and 

by the selection of the support domain of EFG 

nodes. The results of EFG were found in good 

agreement to exact solution than FEM. Uniform 

node distribution scheme, Quartic Spline weight 

functions and appropriate values of support domain 

value and higher number of point in gauss 

integration method yield accurate results in EFG 

mesh free method.  
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