
IJSRST119624 | Received : 01 March 2019 | Accepted : 07 March 2019 | March-April-2019 [6 (2) : 69-75]

© 2019 IJSRST | Volume 6 | Issue 2 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X

Themed Section: Science and Technology

DOI : 10.32628/IJSRST119624

 69

Implementation of Online Test Engine Based on Load Balancing

Diksha Ninave1, Abhishek Aphale1, Ashlesha Wath1, Ankita Watkar1, Tushar Likhar1, Prof. Shraddha Karale2
1BE Students, Computer Science & Engineering, Rajiv Gandhi College of Engineering and Research, Nagpur,

Maharashtra, India
2Assistant Professor, Computer Science & Engineering, Rajiv Gandhi College of Engineering and Research,

Nagpur, Maharashtra, India

ABSTRACT

Numerous expansive web locales get a huge number of hits each day. They require a versatile web server

framework that can give better execution to every one of the customers that might be in various topographical

locales. The regular way to deal with enhancing execution is to have completely repeated web server bunches

in various topographical areas with duplicated servers. In such a domain, a standout amongst the most critical

issues is choosing a server for adjusting a demand. Customer solicitations ought to be coordinated to a server

with the end goal that the time taken for adjusting the demand can be limited. Diverse approaches are feasible

for server determination and it is hard to decide the effect of various arrangements. A distributed framework

comprises of a few self-sufficient nodes, where a portion of the nodes might be overloaded because of a

substantial number of job entries while others nodes are inactive with no preparing. Load Balancing is utilized

for viably dispersing the load among the nodes. Centralized load balancing plans are not adaptable as the load

balancing choice relies upon a focal server. Interestingly completely distributed plans are versatile however,

they do not deliver a reasonable load circulation as they utilize nearby data. In this examination, we propose a

clustered load balancing arrangement for a heterogeneous distributed registering framework.

Keywords : Test Engine, Clustered Load Balancing, Distributed Systems, Workload, Response Time, Node

Utilization

I. INTRODUCTION

The number of clients getting to the Internet is

expanding quickly and usually to have in excess of

100 million hits every day for famous web locales.

For instance, netscape.com website gets in excess of

120 million hits per day. The quantity of clients is

relied upon to keep expanding at a quick rate and

consequently, any website that is mainstream faces

the test of serving a substantial number of customers

with great execution. Full reflecting of web servers or

replication of web locales is one approach to manage

the expanding number of solicitations. Numerous

methods exist for the determination of the closest

web server from the customer's perspective. In a

perfect world, the determination of best server ought

to be done straightforwardly without the mediation

of the client.

Huge numbers of the current plans do just load-

balancing. These plans expect that the reproduced

webpage has all the web servers in a single group.

This is okay for medium measured destinations,

however past a specific measure of traffic, the

https://doi.org/10.32628/IJSRST
https://doi.org/10.32628/IJSRST

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Diksha Ninave et al. Int J Sci Res Sci Technol. March-April-2019; 6(2) : 69-75

70

network to this one bunch turns into a bottleneck. So

expansive web locales have numerous bunches, and it

is best to have these groups geologically distributed.

These progressions the issue to initially choose the

closest group and after that do load balancing inside

the servers of that bunch. Obviously, in the event

that all servers in a group are intensely loaded,

another bunch ought to have been picked. Therefore,

the issue is increasingly overwhelming in such a

domain.

Planning such a framework includes settling on

choices about how as well as can be expected to be

chosen for demand with the end goal that the client

gets a response in the least time and how this demand

is coordinated to that server. In a few procedures, a

server is chosen without considering any framework

state data, e.g. irregular, round robin and so on [6]. A

few approaches utilize weighted limit calculations to

guide more level of solicitations to increasingly

competent servers [7]. A few procedures select a

server depending on the server state [7] and some

others consider customer state data [7]. There is

dependably a trade-off between the overhead because

of the gathering of framework state data and

execution gain by utilization of accessible state data.

In the event that an excessive amount of state data (of

server or customers) is gathered, it might result in

high overheads for accumulation of data and

execution gain may not be practically identical to

overheads. The execution of any load balancing

approach relies upon a large group of highlights like

system delays, parcel misfortunes, transmission

mistakes, and a rate of solicitations, server load and so

forth. It is generally difficult to systematically decide

the execution of an approach given a few conditions.

Re-enactments additionally have constraints in that

they can just consider restricted factors and with the

complexities associated with this case impact of the

considerable number of factors cannot be

systematically decided and reproduced. Thus testing

for execution by setting up a testbed is a sensible

method to assess diverse methodologies.

This testing will when all is said in done require a

devoted testbed on which execution studies should be

possible. Such a testbed ought to be configurable for

various techniques and system qualities. In that

capacity a testbed is probably going to be a devoted

set up with an engaged reason, it will be helpful if a

web service can be made for assessing an approach. In

this, all parameters will be set in the web service,

which will at that point drive the testbed to acquire

the outcomes. Such a service will make a devoted

testbed available over the world. Such a service ought

to satisfy various prerequisites. It ought to be

conceivable to consider the effect of various

parameters on the execution of different

methodologies and to look at them. It ought to be

conceivable to submit new techniques and contrast

their execution and existing ones or to distinguish

conditions where the arrangement performs best.

In this investigation, we portray a web service for

assessing load-balancing procedures for distributed

web server systems. The web service cooperates with

a testbed to mechanize the procedure of

accommodation of parameters, testing and result

from age to enable the client to test and think about

load balancing approaches through in an exceedingly

configurable way. We have pre-characterized some

well-known techniques, which can be assessed for

various parameter settings. The service additionally

enables clients to test new arrangements for load

balancing and contrast their execution and that of

existing ones on an assortment of parameters and

under different conditions and settings.

II. REVIEW OF LITERATURE

Load balancing for distributed figuring framework is

profoundly examined, for quite a while. For the most

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Diksha Ninave et al. Int J Sci Res Sci Technol. March-April-2019; 6(2) : 69-75

71

part, there are two strategies for load balancing in a

distributed situation:

i) A static load balancing approach [1,2,3] relies upon

static data, for example, CPU limit, memory space

and so forth in settling on load balancing choices.

ii) Dynamic load balancing arrangements [2, 4, and 5]

settles on load balancing choices dependent on the

present condition of the framework and consequently

can additionally enhance the framework execution.

Various load-balancing approaches utilize chart

calculations [12] for load conveyance. For load

balancing procedure of a distributed system, the

calculations require two rounds of message trades to

disseminate the workload data, therefore, expanding

the correspondence intricacy of the framework. In

spite of the fact that the conventional goal of load

circulation is to limit the general execution time

called make span when managing substantial systems,

the correspondence cost is likewise a basic issue.

Arora et al. [13] proposed a decentralized load

balancing calculation for heterogeneous Grid

condition.

In spite of the fact that they endeavoured to

incorporate correspondence inactivity amid

activating procedure yet the genuine expense of job

exchange was not considered. Zaki et al. [7] consider

diverse processor speeds and appropriate the load

sufficiently. Hendrickson and Devine [8] considered

the distinctive measure of processor power and

memory limit with respect to heterogeneous systems.

They likewise stressed that organize associations with

various paces must be considered for distributed load

balancing technique. Kielmann et al. [9] considered

an accumulation of groups as a various leveled

framework and utilized a tree topology to do load

balancing. Willebeek and Reeves exhibited a various

leveled balancing strategy (HBM) which sorts out the

framework into a progressive system of subsystems.

The base of the HBM technique incorporates the

worldwide data about the framework and can be a

bottleneck.

Our methodology for load balancing thinks about the

system as a two-dimension progression by evacuating

the base of the tree. This model enhances normal

response time of the framework. We have utilized

the occasional status trade idea of ELISA [6].

In ELISA, load-balancing choice is taken dependent

on line length as it were. Our model settles on load

balancing choice by considering every single

influencing factor, which are current load at

processor and memory, line length and preparing

limit of a node.

III. RELATED WORK

Online examination is one of the vital parts for online

training framework. It is proficient, quick enough

and decreases the substantial measure of the material

asset. An examination framework is produced

dependent on the web. Online examination will

reduce the hurried control of assessing the

appropriate responses given by the candidates

physically. Being an organized Online examination

structure it will diminish paperwork.

The primary objective of this online examination

framework is to adequately assess the understudy

completely through a completely computerized

framework that decreases the required time as well as

acquires quick and exact outcomes. Utilizing an open

source dialect gives us greater adaptability, and yet it

required more opportunity to be modified. The

proposed Online Examination System (OES) can be

effectively embraced by colleges and establishments

so as to make the test progressively secure and

increasingly adaptable. The framework is subdivided

into two principal subsystems (understudy and head)

that are intended to give the framework most

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Diksha Ninave et al. Int J Sci Res Sci Technol. March-April-2019; 6(2) : 69-75

72

extreme advantage by exhibiting cautiously every

subsystem service.

The formal paper-based examination framework is a

long technique to lead an examination. The formal

framework makes everything in paper-based. It gives

advantageous time to go to for understudies. So the

procedure winds up wild additionally the beforehand

online examination process utilizes a single server

because of this the test procedure is moderate or just

a couple of understudies can go to the online

examination at the same time.

IV. PROPOSED ARCHITECTURE

The entire system consists of three main components

that interact to provide the previously described

services.

The Test bed at the back end is a physical set up

which can be configured to simulate a variety of

network conditions, load conditions, server

architectures and load balancing policies.

The web service at the front end is where the

interaction with the users takes place and which

automates the process from submission of test

parameters by the user, configuring the test bed to

follow those parameters, running tests and display of

results to the users. It includes the web server,

application logic, database server and the interface to

the testbed.

Also an API has been designed and implemented

using which new policies can be submitted for testing

on the testbed. It includes standard libraries (API’s)

using which a set of interfaces have to be

implemented by the user according to the policy he is

submitting.

Figure 1. System Architecture

V. IMPLEMENTATION

Load Balancing: In computing, load balancing

improves the distribution of workloads across

multiple computing resources, such as computers,

• computer cluster,

• network links,

• central processing units,

• Disk drives.

Load balancing aims to optimize resource use,

maximize throughput, minimize response time, and

avoid overload of any single resource. Using multiple

components with load balancing instead of a single

component may increase reliability and availability

through redundancy. Ally involves dedicated software

or hardware, such as a multilayer switch or a Domain

Name.

In our system we utilizes multiple server (server_1,

server_2... server_n) to balance the workload and to

improve the efficiency. For Load balancing Round

Robin Algorithm is used.

In this approach, time quantum is taken as the range

of the CPU burst time of all the processes. The range

of the processes is the difference between the largest

(maximum) and smallest (minimum) values.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Diksha Ninave et al. Int J Sci Res Sci Technol. March-April-2019; 6(2) : 69-75

73

A. Uniqueness of Our Approach

Let’s assume that the data are sorted in increasing

numerical order. It gives better turnaround time and

waiting time. Generally, the performance of RR

algorithm depends upon the size of static Time

Quantum (TQ). If the TQ is extremely large, the

algorithm approximate to First-Come First-Served

(FCFS). If the TQ is extremely small, the algorithm

causes too many context switches. So, our approach

solves this problem by taking a dynamic TQ where

the TQ is the difference between maximum and

minimum CPU burst time as shown in equation (1).

TQ = MAXBT – MINBT (1)

Where MAXBT = MAXimum Burst Time

MINBT = MINimum Burst Time

B. Proposed Algorithm

In our algorithm, processes are already present in the

Ready Queue (RQ). By default, Arrival Time (AT) is

assigned to zero. The number of processes ‘n’ and CPU

Burst Time (BT) are accepted as input and Average

Turnaround Time (ATT), Average Waiting Time

(AWT) and number of Context Switch (CS) are

produced as output. Let TQ and TQnew be the time

quantum and new time quantum respectively. The

pseudocode for the algorithm is presented as follows

and the flowchart of the algorithm is presented in

Figure 2.

1. All the processes present in the ready queue are

sorted in ascending order.

//n = number of processes, i = loop variable

2. while (RQ != NULL)

//RQ = Ready Queue

 TQ = MAXBT – MINBT

//TQ = Time Quantum

//MAXBT = MAXimum Burst Time

//MINBT = MINimum Burst Time

(Remaining burst time of the processes)

// If one process is there then TQ is equal to BT of

itself

3. if (TQ < 25)

set TQnew = 25

else

set TQnew = TQ

end if

4. //Assign TQ to (1 to n) process

for i = 1 to n

{

 Pi → TQnew

}

end for

// Assign TQnew to all the available processes.

5. Calculate the remaining burst time of the processes.

6. if (new process is arrived and BT != 0)

 go to step 1

else if (new process is not arrived and BT != 0)

 go to step 2

else if (new process is arrived and BT == 0)

 go to step 1

else

 go to step 7

end if

end while

7. Calculate ATT, AWT and CS.

//ATT = Average Turnaround Time

//AWT = Average Waiting Time

//CS = number of Context Switches

8. End

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Diksha Ninave et al. Int J Sci Res Sci Technol. March-April-2019; 6(2) : 69-75

74

Figure 2. Flowchart of Min-Max Round Robin

(MMRR) algorithm

VI. CONCLUSION

Load balancing based Online Examination System is a

web application. The key idea is utilized numerous

server for load balancing reason and to limit the

measure of paper and convert all types of

documentation to advanced shape. It can see that the

data required can be gotten effortlessly and exactness

in the mechanized framework. The client with least

learning about PC can be capable work the

framework effortlessly. The framework additionally

delivers brief outcome required by the administration.

VII. REFERENCES

[1] S. F. El-Zoghdy, H. Kameda, J. Li, "Comparison

of dynamic vs. static load balancing policies in a

mainframe-personal computer network model",

INFORMATION, vol. 5, no. 4, pp. 431-446,

2002.

[2] K.Y. Kabalan, W.W. Smari, J.Y. Hakimian,

"Adaptive load Sharing in heterogeneous

system: Policies Modifications and Simulation",

CiteSeerx, 2008.

[3] H. C. Lin, C.S. Raghavendra, "A Dynamic Load

Balancing Policy with a Central Job Dispatcher

(LBC)" in , 1992.

[4] Ioannis Konstantinou, Dimitrios Tsoumakos,

"Fast and Cost-Effective Online Load-Balancing

in Distributed Range-Queriable Systems",

Parallel and Distributed Systems IEEE

Transactions on, vol. 22, no. 8, pp. 1350-1364,

2011.

[5] I. Ahmad, A. Ghafoor, K. Mehrotra,

"Performance Prediction of Distributed Load

Balancing on Multicomputer Systems", ACM,

pp. 830-839, 1991.

[6] L. Anand, D. Ghose, V. Mani, "ELISA: An

Estimated Load Information Scheduling

Algorithm for distributed computing systems",

International Journal on Computers and

Mathematics with Applications, vol. 37, no. 8,

pp. 57-85, April 1999.

[7] Mohammad Javeed Zaki, We Li, Srinivasan

Parthasarathy, "Customized Dymnamic Load

Balancing for a network of workstations",

Journal of Parallel and Distributed Computing,

vol. 43, no. 2, pp. 156-162.

[8] K Devine, B Hendrickson, E. Boman, M St

John, C Vaghan, "Design of dynamic load

balancing tools for parallel applications",

Proceedings of the 14th International

Conference on Super Computing, pp. 110-118,

2000.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Diksha Ninave et al. Int J Sci Res Sci Technol. March-April-2019; 6(2) : 69-75

75

[9] Kielmann Niewpoort, Bal, "Efficient Load

Balancing for wide area divide and conquer

applications", proceedings of the eighth ACM

SIGPLAN symposium on Principles and

Practises of Paralle programming, pp. 34-43.

[10] Belabbas Yagoubi, Meriem Meddeber,

"Distributed Load Balancing Model for Grid

Computing", Revue ARIMA, vol. 12, pp. 43-60,

2010.

[11] P. Neelakantan, "International Journal of

Research in Computer Science ISSN 2249–

8265", Anadaptive load sharing algorithm for

Heterogeneous distributed system, vol. 3, no. 3,

pp. 9-15, 2013.

[12] L.K. Dey, D. Ghosh, Satya Bagchi, J. Zhang,

"Efficient Load Balancing Algorithm Using

Complete Graph" in ICAIC 2011 Part V CCIS,

vol. 228, pp. 643-646, 2011.

[13] M. Arora, S.K. Das, R. Biswas, "A De-

centralized scheduling and load balancing

algorithm for heterogeneous grid

environments", Proceedings of the

International Conference on Parallel Processing

Workshops (ICPPW.2002), pp. 499-505, 2002.

[14] A. Menendez LC, H. Benitez-Perez, "Node

Availability for Distributed Systems

considering processor and RAM utilization for

Load Balancing", Int. J. of Computers

Communications & Control, vol. V, no. 3, pp.

336-350, 2010, ISSN 1841-9836, E-ISSN 1841-

9844.

[15] Orly Kremen, Jeff Kramer, "Methodical

Analysis of Adaptive Load Sharing Algorithms",

IEEE Transactions on Parallel and Distributed

Systems, vol. 3, no. 6, November 1992.

[16] Marc. H. Willebeek, Le Mair, Anthony P.

Reeves, "Strategies for Dynamic Load Balancing

on Highly Parallel Computers", IEEE

Transactions on Parallel and Distributed

Systems, vol. 4, no. 9, September 1993.

Cite this article as :

Diksha Ninave, Abhishek Aphale, Ashlesha Wath,

Ankita Watkar, Tushar Likhar, Prof. Shraddha Karale,

" Implementation of Online Test Engine Based on

Load Balancing", International Journal of Scientific

Research in Science and Technology(IJSRST), Print

ISSN : 2395-6011, Online ISSN : 2395-602X, Volume

6, Issue 2, pp.69-75, March-April-2019.

Journal URL : http://ijsrst.com/IJSRST119624

http://ijsrst.com/%20IJSRST119624
http://ijsrst.com/%20IJSRST119624

