

Procedure for Coordinates Conversion between NTM and UTM Systems in Minna Datum Using AllTrans and Columbus Software

Eteje, S. O.*, Oduyebo, O. F. and Oluyori, P. D.

Nnamdi Azikiwe University, Awka, Anambra State, Nigeria Corresponding Author*: eteje.sylvester@yahoo.com

ABSTRACT

As the Edo State Branch of the Nigerian Institution of Surveyors (NIS) has decided to align with the agency (Edo Geographic Information Service) that is responsible for the processing of Certificate of Occupancy to be determining positions in the UTM system, the coordinates of the existing controls in the State have to be converted to UTM coordinates using conversion software. Consequently, this paper presents detailed procedures for the application of AllTrans and Columbus software for positions conversion between NTM and UTM systems in Minna datum. The Minna datum properties, as well as the NTM and UTM parameters, have been detailed for effective use. The step by step procedures to consider when applying the software have enumerated. It was recommended that the Edo State branch of the institution (NIS) should get the full and the latest version of the software. It was also recommended that there should be a lecture for the practical demonstration of the detailed procedures.

Keywords: Coordinates, Conversion, NTM, UTM, AllTrans, Columbus, Software, Minna Datum, Clarke 1880

I. INTRODUCTION

The Edo State Government of Nigeria has established an agency responsible for the processing of Certificate of Occupancy. The agency known as the Edo Geographic Information Service uses orthophotos for positions determination. The orthophotos were georeferenced with Universal Traverse Mercator (UTM) coordinates in Minna datum. Thus, the positions determined by the agency using the orthophotos are in UTM. The system does not have a frame to realize it in the State.

Over the years, positions of points have been determined in the State by Surveyors in the Nigeria Traverse Mercator, NTM (state plane) which is also known as the National Origin. These two systems (NTM and UTM) are rectangular coordinate systems measured in linear metres. But they are different in origin and scale. The processing of a Certificate of Occupancy requires the use of a survey plan produced by a Registered Surveyor. Presently, Surveyors in the State are producing survey plans with respect to the National Origin (NTM) while the agency is checking/charting the positions determined in NTM by the private practising Surveyors using their (the agency) system designed to determine positions in UTM. Checking/charting the NTM coordinates by the agency with its system requires the conversion of the NTM positions to UTM coordinates. Consequently, the Nigerian Institution of Surveyors, Edo State Branch has decided to be determining positions in the State in the UTM system to align the agency. To do this, the NTM positions of all the existing control stations in the State must be converted to UTM positions of the same controls. This is necessary as any

survey carried out must be connected to as well as oriented with not less than three control stations. The switching from NTM to UTM position determination by the Institution was discussed in its meeting held on 1st June 2019, but the final decision is yet to be conveyed to the respective state surveyors. The conversion of positions in a rectangular system (NTM or UTM) to another rectangular system (NTM or UTM), requires the coordinates to be first converted to geographic coordinates then from geographic coordinates to the positions of the points in any other rectangular coordinate system of interest. Also, from coordinates, the geographic the geocentric coordinates (XYZ) of the points can be determined. It is to be noted here that since the conversion is within Minna datum, transformation/datum shift parameters are not needed. Datum shift parameters are needed when transforming between two datums say WGS 84 and Minna datums.

convert coordinates from one rectangular To coordinate system to another, transformation /conversion software is used. Consequently, this paper presents detailed procedures for the conversion of positions from one rectangular coordinate system to another using AllTrans and Columbus software. These software have been compared with other transformation/conversion software and recommended for application in Nigeria. The comparison of the software is detailed in Eteje et al. (2018). For effective application of the two conversion software in Edo State as well as the entire country, the properties of the Minna datum, the NTM projection (the three belts parameters) and those of the UTM projection (the three zones parameters) must be known. Also, the extent/bound width of each belt and zone in each state must be known. This will enable the belt and the zone which the positions to convert be identified before conversion. Edo State is partly west and mid belts, and partly zones 31 and 32.

1.1 AllTrans Software

According to George (2012), use the AllTrans application to perform coordinate transformations between various coordinate systems. As mentioned above, one can perform conversions between coordinates using different mathematical representations and geodetic systems. One can perform transformations between Gauß-Krüger coordinates. UTM coordinates, geographic coordinates and 3D-Cartesian coordinates. Manually input the data or import it to perform the transformation. With AllTrans software, 7-Parameter Datum Transformation and calculation of datum transformation parameters using identical points can be carried out.

1.2 Columbus Software

Columbus is a one, two, and three dimensional network adjustment, network pre-analysis and coordinate transformation software package which allows one to create, edit, solve and analyse Vertical, Geodetic, State Plane, UTM, Custom Projection and Local NEE (North, East and Elevation) surveys anywhere in the world (Columbus, 2009). Columbus accepts terrestrial and/or GPS (satellite) observations to define networks. Columbus is not just a network adjustment package; it is a complete toolkit which can be used for on-the-fly COGO computations, coordinate transformations, geoid modelling and computation of areas of selected polygons in a project. According to Columbus (2009), to report coordinate results in a different form, Columbus provides a powerful set of coordinate transformation tools to generate Geodetic, State Plane, UTM, Custom Projection, Earth Centred Earth Fixed Cartesian, or Local North, East and Elevation (NEE or NEU) positions. To transform geodetic positions from one datum to another, Columbus provides rigorous three, four and seven parameter least squares datum transformation capability. Columbus also includes an assortment of Geodetic, State Plane, UTM, Local NEE coordinate geometry (COGO) routines for ad-hoc computations, network loop closure and open-ended traverses.

1.3 The Nigeria Geodetic Datum

According to Eteje et al. (2018), the Nigeria Minna datum is a geodetic datum that is suitable for use in Nigeria-onshore and offshore. Minna datum references the Clarke 1880 (RGS) ellipsoid (Semimajor axis, a = 6378249.145m; Flattening, f = 1/293.465) and the Greenwich prime meridian. The datum origin is a fundamental point: Minna base station L40. Latitude: 9°38'08.87"N, longitude: 6°30'58.76"E (of Greenwich). It is a geodetic datum for topographic mapping. It was defined by information from NIMA (Eteje et al., 2018). Uzodinma et al. (2013) gave the orthometric height, Hof station L40 as 281.13m.

1.4 Conversion of NTM and UTM Northing and Easting Coordinates to Geodetic Coordinates (φ, λ, h)

The conversion of the two rectangular systems (NTM and UTM) coordinates to geographic positions, requires the application of the same models. The systems only differ in origin and scale factor. The models for the conversion of the NTM and UTM coordinates to geodetic or geographic coordinates as given by Kiliç, (2005) are:

$$\varphi = fp - Q_1(Q_2 - Q_3 + Q_4) \tag{1}$$

$$\lambda = \lambda_o + (Q_5 - Q_6 + Q_7)/\cos(fp) \tag{2}$$

Where,

$$Q_1 = N_1 \tan(fp)/R_1 \tag{3}$$

$$Q_2 = D^2/2 \tag{4}$$

$$Q_3 = (5 + 3T_1 + 10C_1 - 4C_1^2 - 9e'^2)D^4/24$$
 (5)

$$Q_4 = (61 + 90T_1 + 298C_1 + 45T_1^2 - 3C_1^2 - 252e'^2) D^6/720$$
(6)

$$Q_5 = D \tag{7}$$

$$Q_6 = (1 + 2T_1 + C_1) D^3 / 6$$
(8)

$$Q_{7} = (5 - 2C_{1} + 28T_{1} - 3C_{1}^{2} + 8e'^{2} + 24T_{1}^{2})D^{5}/120$$
(9)

 $N_1 = a/(1 - e^2 \sin^2(fp))^{1/2}$ (Radius of curvature in prime vertical) (10)

$$R_1 = a(1-e^2) / (1-e^2 \sin^2(fp))^{3/2}$$

(Radius of curvature in meridian section)(11)

$$D = x/(N_1 k_o) \tag{12}$$

$$C_1 = e^{\prime 2} \cos^2(fp)$$
(13)

$$T_1 = \tan^2(fp) \tag{14}$$

$$e'^2 = (ea/b)^2 = e^2/(1-e^2)$$
 = Second eccentricity
squared (15)

 $e^2 = (a^2 - b^2)/a^2$ = First eccentricity squared (16) $fp = \mu + J_1 \sin(2\mu) +$

$$J_{2} \sin(4\mu) + = \text{Footprint Latitude} \quad (17)$$
$$J_{4} \sin(8\mu) + = J_{4} \sin(8\mu)$$

$$\mu = M / \begin{bmatrix} a(1 - (e^2 / 4) - (3e^4 / 64) - (5e^6 / 256) \end{bmatrix}$$
(18)

$$M = y/k_o \tag{19}$$

$$e_{/} = \left[1 - (1 - e^{2})^{1/2}\right] / \left[1 + (1 - e^{2})^{1/2}\right]$$
(20)

$$J_{1} = \left[(3e_{/}/2) - (27e_{/}^{3}/32) .. \right]$$
(21)

$$J_{2} = \left[(21e_{/}^{2}/16) - (55e_{/}^{4}/32) .. \right]$$
(22)

$$J_3 = (151e_1^3 / 96..) \tag{23}$$

$$J_4 = (1097 \, e_1^{-7} / 512..) \tag{24}$$

a =Semimajor axis

b = Semiminor axis

 k_o = Scale Factor (0.9996 for UTM and 0.99975 for NTM)

- *x* = Easting Coordinate (relative to the Central Meridian, CM: (subtract the CM from conventional UTM coordinate, *x;* 500,000mE for UTM while it varies for NTM, west belt = 230738.266mE, mid belt = 670553.984mE and east belt = 1110369.702mE).
- *y* = Northing Coordinate.

1.5 Conversion of the Geodetic Coordinates (φ , λ , h) to Plane Rectangular Systems (NTM and UTM) Coordinates

The models for the conversion of geodetic coordinates to either of the two local plane rectangular (NTM or UTM) coordinates are the same. The differences in the two plane systems are in the properties to be used in the conversion. Thus, the origin, and scale factor. To convert the geographic coordinates (latitude and longitude) on the local ellipsoid to either NTM or UTM northing and easting, equations (25) to (34) given by Manchuk (2009) are used.

$$E = k_o N \begin{bmatrix} A + (1 - T + C)A^3 / 6 + (5 - 18T + T^2 + 72C - 58e'^2)A^5 / 120 \end{bmatrix} (25)$$

$$N = k_o \begin{bmatrix} M - M_o + N \tan \varphi [A^2 / 2 + (5 - T + 9C + 4C^2)A^4 / 24 + (61 - 58T + T^2 + 600C - 330e'^2)A^6 / 720] \end{bmatrix} (26)$$

$$k = k_o \begin{bmatrix} 1 + (1 - C)A^2 / 2 + (5 - 4T + 42C + 13C^2 - 28e'^2)A^4 / 24 + (61 - 148T + 16T^2)A^6 / 720 \end{bmatrix} (27)$$

Where,

 $k_o = 0.99975$ for NTM and 0.9996 for UTM (28) $e'^2 = e^2 / (1 - e^2) =$ Second eccentricity squared (29) $e^2 = 2f - f^2$ eccentricity squared (30) N = Radius of curvature as given in equation (2)

$$T = \tan^2 \varphi \tag{31}$$

$$C = e^{\prime 2} \cos^2 \varphi \tag{32}$$

$$A = (\lambda - \lambda_o) \cos \varphi \tag{33}$$

- N =Northing of point.
- E =Easting of point.
- φ = Latitude of point
- λ = Longitude of point

 λ_o = Longitude of point of center meridian of belt or zone.

$$M = a \begin{bmatrix} (1 - e^2 / 4 - 3e^4 / 64 - 5e^6 / 256 - \\ \cdots)\varphi - (3e^2 / 8 + 3e^4 / 32 + \\ 45e^6 / 1024 + \cdots)\sin^2 \varphi + \\ (15e^4 / 256 + 45e^6 / 1024 + \cdots)\sin^4 \varphi - \\ (35e^6 / 3072 + \cdots)\sin^6 \varphi + \cdots \end{bmatrix} (34)$$

M = Distance on the meridian from parallel of false origin (4°N for NTM and 0° for UTM) to the parallel, φ_A of point.

 φ_A = Latitude of the point

According to Manchuk (2009), M_o is computed using Equation (34) for φ_o , which is the latitude crossing the central meridian at the origin of the (*E*, *N*) coordinates. Equations (1) to (34) are used to develop programs which the transformation/conversion software normally apply during computation / conversion.

1.6 Properties/Characteristics of Nigeria (Modified) Transverse Mercator projection (NTM)

The NTM is a modified version of TM adopted for Nigeria. The modifications take care of the large expanse of the country which covers about 10° (i.e. $4^{\circ}N - 14^{\circ}N$) latitude and 12° (i.e. $2^{\circ} 30^{\circ} - 14^{\circ} 30^{\circ}E$) longitude. It is generally referred to as 3-belt system (Omoigui, 1973 and Idowu, 2012). The characteristics of Nigeria (modified) Transverse Mercator Projection (NTM) as given by Uzodinma, *et al.* (2013) are:

- 1. NTM is a conformal projection
- 2. The country is divided into 3 belts each 40 wide (Figure 2).
- 3. The 3 belts are bounded in the north by the 14oNparallel and in the south by 4oN. Hence the false origin of northing is at latitude 4o N and False Northing, No = 0.000m (see Table 1).

Belt	Bounding	Central	False Easting						
	Longitudes	Meridian	of Central						
		(l₀)	Meridian						
West	2°30'E –	4∘30' E	230738.266m						
	6°30'E		Е						
Mid	6º 30' –	8°30'E	670553.984m						
	10°30'E		Е						
East	10°30' –	12º 30' E	1110369.702m						
	14º30'E		Е						
	$C_{\text{result}} = \frac{1}{2} \left(\frac{1}{2012} \right)$								

Table 1: NTM Grid Parameters

Source: Uzodinma, et al (2013)

- 4. The scale factor at each central meridian is 0.99975.
- 5. A rectangular metric grid is superimposed on the three belts such that they intersect along the 9°N parallel.

According to Ufuah and Adesina (2005) and Eteje *et al.* (2018), the central meridians of the west and east belts are fixed respectively to be 439815.718 metres west and east of the central meridian of the mid belt along the 9°N parallel. The maximum angular distance of a point in a belt, from the central meridian of the belt, is 2°. In other words, each belt is 4° wide.

1.7 Properties/Characteristics of Universal Traverse Mercator (UTM) as Applied in Nigeria

Uzodinma *et al.* (2013) also gave the properties/characteristics of the UTM as applied in Nigeria as follow:

- 1. Nigeria is covered by zones 31, 32 and 33 of the UTM.
- 2. Each zone has its independent coordinate system with X-axis 500,000.0m west of the central meridian and Y-axis lying along the equator.

The UTM grid parameters are shown in table 2 as given by Uzodinma *et al.* (2013).

		Central	
	Bounding	Meridian	Grid Coord. of
Zone	Longitudes	(l₀)	Central Meridian
			0.0m N,
31	0 °- 6°E	3°E	500,000.0mE
			0.0m N,
32	6° – 12°E	9 ∘E	500,000.0mE
			0.0m N,
33	12° – 18°E	15°E	500,000.0mE

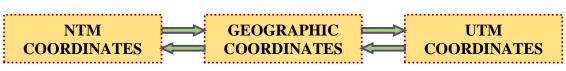
Source: Uzodinma, et al (2013)

3. UTM in Nigeria is computed on the Clarke 1880 reference ellipsoid.

In the UTM, the maximum angular distance of a point in a belt, from the central meridian of the zone is 3^o (Mugnier *et al.*, 2009). Thus, each zone is 6^o wide. Its application is limited to between latitudes 84^oN and 80^oS as stated by Edan *et al.* (2014).

The properties/parameters of each of the plane rectangular systems, NTM and UTM and those of the datum in question (Minna datum) are applied during the conversion of the coordinates using the software. The parameters to apply in each plane rectangular system depend on either the belt or the zone in which the positions are.

II. METHODOLOGY


The procedure for the application of the two software (AllTrans and Columbus software) for conversion between NTM and UTM in Minna datum requires the NTM coordinates be converted to geographic coordinates using equations (1) and (2), then the geographic coordinates are converted to UTM coordinates using equations (25) and (26). The same

procedure is used when converting UTM coordinates to NTM positions (see figure 1).

2.1 Procedure for Application of AllTrans Software for Coordinates Conversion between NTM and UTM

The following steps are considered when converting positions from NTM to UTM:

 Launch the software, displays as shown in Figure 2.
 In Start Coordinate System, drop-down Area and select Nigeria. This will automatically display Minna (Clarke 1880 (RGS)) in the Geod Datum.

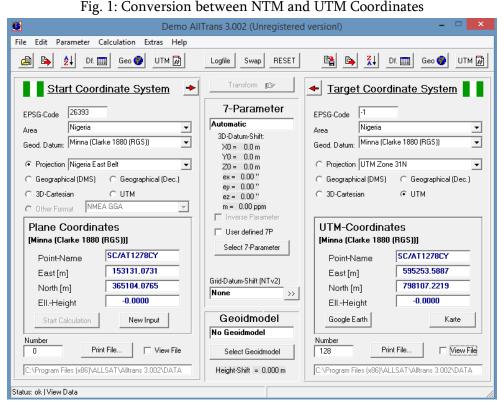


Fig. 2: Launched AllTrans Software

2.2 Procedure for Application of AllTrans Software for Coordinates Conversion between NTM and UTM

The following steps are considered when converting positions from NTM to UTM:

1. Launch the software, displays as shown in Figure 2.

2. In Start Coordinate System, drop-down Area and select Nigeria. This will automatically display Minna (Clarke 1880 (RGS)) in the Geod Datum.

3. Check Projection and select either west, mid or east belt, depending on the belt in which the positions to convert are.

4. In Target Coordinate System, drop-down Area and select Nigeria. This will also automatically display Minna (Clarke 1880 (RGS)) in the Geod Datum.

5. Check UTM and select either zone 31, 32 or 33, also depending on the zone in which the positions to convert are.

6. In Plane Coordinate, input the control ID and coordinates (northing and easting) accordingly one after the other.

7. Finally, click on Start Calculation at the bottom right-hand side of the software environment to convert and display the converted UTM coordinates. Note that at this step, the coordinates of a point are converted one after the other.

Demo All	Frans 3.002 (Unregistered	l version!) – 🗆 🗙
File Edit Parameter Calculation Extras Help		
👍 🕒 🛃 Df. 🥅 Geo 🕒 UTM 🗃	Logfile Swap RESET	🕦 🔖 🚺 Df. 🏢 Geo 🕒 UTM 📄
Start Coordinate System 🔸	Transform 🗊	Target Coordinate System
EPSG-Code 26393 Area Nigeria Geod. Datum: Minna (Clarke 1880 (RGS)) Geographical (DMS) Geographical (Dec.) G 3D-Cartesian G UTM G Other Format NMEA GGA	7-Parameter Automatic 3D-Datum-Shift: X0 = 0.0 m Y0 = 0.0 m 20 = 0.0 m ex = 0.00 " ey = 0.00 " ez = 0.00 m m = 0.00 ppm	EPSG-Code -1 Area Nigeria Geod. Datum: Minna (Clarke 1880 (RGS)) Projection UTM Zone 31N Geographical (DMS) Geographical (Dec.) C 3D-Cartesian
Plane Coordinates [Minna (Clarke 1880 (RGS))] Point-Name SC/AT1278CY	Inverse Parameter User defined 7P Select 7-Parameter	UTM-Coordinates [Minna (Clarke 1880 (RGS))] Point-Name SC/AT1278CY
East [m] 153131.0731 North [m] 365104.0765 EllHeight -0.0000	Grid-Datum-Shift (NTv2)	East [m] 595253.5887 North [m] 798107.2219 EllHeight -0.0000
Start Calculation New Input	Geoidmodel	Google Earth Karte
0 Print File D View File	Select Geoidmodel	128 Print File View File
C:\Program Files (x86)\ALLSAT\Alltrans 3.002\DATA	Height-Shift = 0.000 m	C:\Program Files (x86)\ALLSAT\Alltrans 3.002\DATA
Status: ok View Data		

Fig. 2: Launched AllTrans Software

8. If the coordinates are many and they are to be converted at the same time, click the Parameter menu then, the Format of Data submenu to select State System. This will display the Start System Data East and Height and click OK (see Figure 3). Format dialog box. In the dialog box, click on Plan Coord tab and check/select data format of interest say Name, North, East and Height and click OK (see Figure 3).

Eteje, S. O. et al Int J Sci Res Sci Technol. September-October-2019; 6 (5):128-143

Demo AllTrans 3.002 (Unregistered	version!) – 🗆 ×
File Edit Parameter Calculation Extras Help	
B B 2↓ Df. □ Geo ● UTM D Logfile Swap RESET	🕦 🔖 🛴 Df. 🏢 Geo 🌒 UTM 📄
Start Coordinate System	← Target Coordinate System
ALLTRANS: Selection of data-format Start-Syst Plane coord. Geographical UTM 3d-cart. coordinates Non	EPSG-Code -1 Area Nigeria Geod. Datum: Minna (Clarke 1880 (RGS))
Data format: Plane coordinates 0.0 m 0.0 m C East North 0.00 " C North East 0.00 " C East North Height 00 ppm	Projection UTM Zone 31N C Geographical (DMS) Geographical (Dec.) 3D-Cartesian O UTM
North East Height Parameter Name East North Share East North Height Name East North Height Name North East Height Shift (NTv2)	UTM-Coordinates [Minna (Clarke 1880 (RGS))] Point-Name SC/AT1278CY East[m] 595253.5887 North [m] 798107.2219
✓ OK Cancel dmodel model	EllHeight -0.0000 Google Earth Karte
Number View File Select Geoidmodel 0 Print File View File Select Geoidmodel C:\Program Files (x86)\ALLSAT\Alltrans 3.002\DATA Height-Shift = 0.000 m	Number Yint File View File 128 Print File View File C:\Program Files (x86)\ALLSAT\Alltrans 3.002\DATA
C:\Program Files (x86)\ALLSAT\Alltrans 3.002\DATA Height-Shift = 0.000 m Status: ok View Data	UCXProgram Files (xoo) VALLSAT VAlitrans 3.UU2/UATA

Fig. 3: Setting of Start Coordinate System Data Format

9. Also, set the Target Coordinate System Data Format. Click the Parameter menu then, the Format of Data submenu to select Target System. This will display the Target System Data Format dialog box. In the dialog box, click on UTM tab and check/select data format of interest say Name, North, East and Height and click OK (see Figure 4). Note that the Start and the Target Coordinate System data format must be the same.

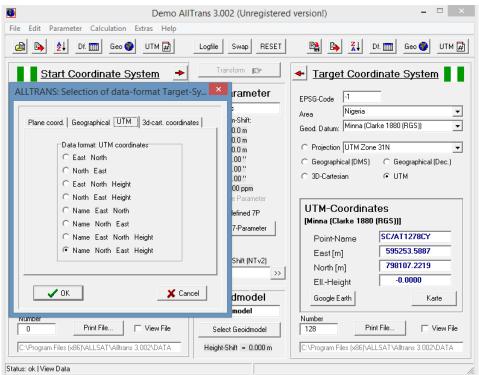


Fig. 4: Setting of Target Coordinate System Data Format

10. Type the input coordinates (NTM) in notepad in the order of the chosen data format and save the file on either Desktop or in Document.

11. Click on the File menu and select Open File (File Input) submenu. Navigate to where the saved input file is and import the NTM coordinates to the software environment.

12. Click on Start Calculation at the bottom lefthand side of the software to convert the NTM coordinates in the imported file.

13. Click on View File at the bottom right-hand side of the software to display the converted UTM coordinates.

14. Also, click on View File at the bottom left-hand side of the software to display the inputted NTM coordinates (See Figure 5).

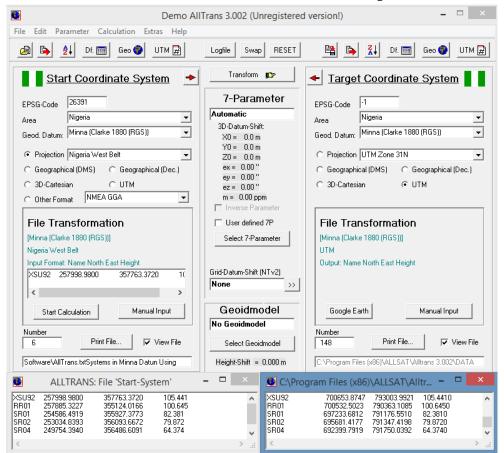


Fig. 5: Inputted NTM and Converted UTM Coordinates

To convert from UTM to MTN, the same procedure is used except for the following:

1. In step 3, the Start Coordinate System will be set to UTM and either zone 31, 32 or 33 will be selected, depending on the zone in which the UTM coordinates to convert are.

2. In step 5, check Projection and select either west, mid or east belt, depending on the belt in which the positions to convert are.

3. In step 6, in UTM Coordinate, input the control number and the UTM coordinates (northing and easting) accordingly one after the other.

4. In step 6, click on Start Calculation to convert and display the converted NTM coordinates at the bottom right-hand side of the software environment.

5. In steps 8 and 9, set the Start (input) and the Target (output) Coordinate Systems data formats to UTM and NTM respectively. And they must be the same.

6. In step 12, also click on Start Calculation at the bottom left-hand side of the software to convert the UTM coordinates in the imported file.

7. In steps 13 and 14, click on View at the bottom right and left-hand sides to respectively display the converted NTM and the inputted UTM coordinates.

2.3 Procedure for Application of Columbus Software for Coordinates Conversion between NTM and UTM

The conversion of coordinates between two rectangular systems using Columbus software, requires the rectangular coordinates be converted to geographic positions then, the geographic positions are re-entered into the software and converted to rectangular coordinates of interest. Columbus is not like AllTrans software that does the conversion directly. The following steps are considered when converting positions from NTM to UTM:

1. Launch the software.

 Click on the File menu to select New as shown in Figure 6. This will display a new working environment.

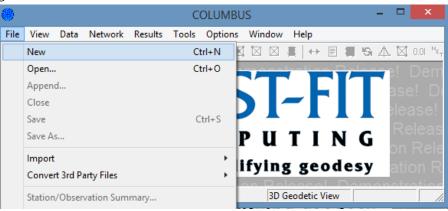


Fig. 6: Creating New Working Environment

3. Click on Options menu to select Datum submenu. This will display Select a Datum dialog box. In the dialog box, select Clarke 1880 and click OK (see Figure 7).

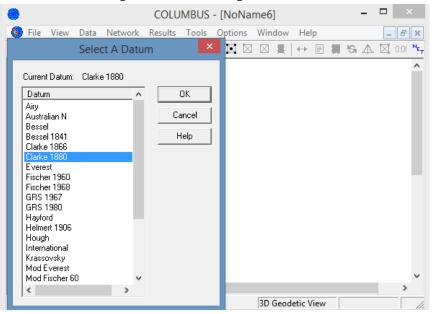


Fig. 7: Selection of Datum (Ellipsoid)

4. Also, click on the Options menu to select Unit submenu. This will display Linear and Angular Units dialog box. In the dialog box, check Metres in Linear

Units, Degrees in Angular Units and DD.MMSSsssss (Degree Minute and Second) in DMS or GMS Input and click OK (see Figure 8).

Eteje, S. O. et al Int J Sci Res Sci Technol. September-October-2019; 6 (5):128-143

0	COLUN	IBUS - [NoNan	ne6]		 ×
😧 File View Data I	Network Results	1			8 ×
Linear a	and Angular Units	×			^
Meters U.S. Feet Intl Feet	Angular Units C Degrees C Grads or Gons DMS or GMS Input C DD.MMSSsssss C DDMMSS.sssss	OK Cancel Help	3D Geodetic V	/iew	>

Fig. 8: Linear and Angular Units Settings

5. To set/enter the NTM belt parameters in which the positions to convert are, click on Options menu to select Projection submenu. In the Projection submenu, select State Plane Zones to display Select/Setup The Current Projection Zone dialog box. In the dialog box, select User Define (UD Traverse Mercator, TM) (see Figure 9) and click OK to display Setup Traverse Mercator Projection dialog box. In the dialog box, enter the belt parameters in which the coordinates to convert are. Enter the following parameters for the Nigeria West belt given in the first row of Table 1 as shown in Figure 10.

								-			
	0		C	COLUMBUS	- [NoN	lame1]			- 🗆	×	
	🚱 File	View	Data Network Re	sults Tools	Option	ns Wind	ow He	lp		. 8 ×	
			Select/Se	tup The Cu	rrent Pr	ojection	n Zone		×	1 0.01 NE.	
										^	
		Curre	nt Zone: UD Transver	se Mercator	T	м					
		ldx	Name	Code	Num	Туре	^	OK			
		000	UD Lambert Single			L1		- ·			
		001	UD Lambert Double UD Transverse Merce	stor		L2 TM		Cancel			
			UD Azimuthal Equidis			AE		Help			
		004	ALABAMA	E	0101	TM	-		_		
		005		W	0102	TM					
		006	ALASKA ALASKA	2	5002 5003	TM TM					
		007	ALASKA	4	5004	TM					
		009	ALASKA	5	5005	TM					
		010	ALASKA	6	5006	TM					
		011	ALASKA ALASKA	7	5007 5008	TM TM					
		012		9	5008	TM					
		014	ALASKA	10	5010	L2					
		015	ARIZONA	E	0201	TM					
		016	ARIZONA ARIZONA	C W	0202	TM TM					
		017	ARKANSAS	N	0203	L2					
		019	ARKANSAS	S	0302	L2					
		020		1	0401	L2	~			. *	
	<	<	T AT LET D KITA		100172	>				-	
	For Help,									111	
	E	- 0.	Coloction o	f Curren		*****		[awaat		1.	
	ГЦ	g. 9:	Selection o	I Curre	:11t I	raver	se w	lercau	or De	:11	
			CC	LUMBUS	- [No	Name	1]		-		
🙆 Fi	le View	Data	Network Resu	ults Tools	Optic	ons Wi	ndow	Help			ъ×
-	2 🗆 4										0.01
) X	XQ 🕄 🛛					↔ 🗉	ন স	4 🛛	0.01
			Setup Tran	sverse Me	ercato	r Proje	ction	×			^
			Central Meridian:	4.3			0	$\langle $			
							-				
			Scale Factor:	0.99975			Can	cel			
			Central Parallel:	4			He	lp			
			Central Farallel:	4.							
			False Easting:	230738.2	266						
		_		12001-0012					_		× *
<			False Northing:	0.							>

Fig. 10: Entering of the Positions Belt Parameters (Nigeria West Belt Parameters)

For Help, press F1

6. To set/enter the UTM zone parameters in which the positions to convert are, click on Options menu to select Projection submenu. In the Projection submenu, select UTM Zone Setup to display UTM or TM Zone Setup dialog box. In the dialog box, select the zone in which the coordinates to convert are and click OK. Here, zone 31 is selected as shown in Figure 11. Note that the selection of a zone will automatically update the other fields of the dialog box.

	COL	UMBUS - [NoName1]	- 🗆 🛛
😕 File View Data	Network Results	s Tools Options Window Help	_ & ×
🗋 🗅 🚅 🔚 🎒 🛛	୍ଷ Q 🞲 🛛 🛛		IGA⊠ 0.01 №
	UT	M or TM Zone Setup	^
	Central Meridian:	В. ОК	
	Scale Factor:	0.9996 Cancel	
	False Easting:	500000. Help	
	False Northing:	0.	
	Select UTM Zone:	31 💽	v
< For Help, press F1	NOTE: Values in firs	it 4 fields are saved when OK is pressed.	> /

Fig. 11: Entering of the Positions Zone Parameters (Zone 31 Parameters)

7. Having done with the necessary settings, click on the Data menu and select Stations submenu to display Add or Modify Station Data dialog box. In the dialog box, click on State Plane to enter the NTM coordinates. Also, click on Add 25 Rows at the top right-hand side of the dialog box to display the spreadsheet in which the positions information will

be entered. Enter the stations' IDs/Numbers, Northing and Easting coordinates of the points and click Keep and Exit tab at the bottom left-hand side of the dialog box (see Figure 12). This will exit the dialog box and plot the points/stations in the software environment (see Figure 13).

					COLUMBUS - [NoName1]	- 🗆 🛛
(2) F	ile \	/iew Data Netw	ork Results	Tools Option	Window Help	_ 8 ×
					Add or Modify Station Data	×
Geod	letic	ECEF Cartesian Sta	te Plane UTM	Local NEUE	Height Description	
	eters					
						Add 25 Rows
F	low	Station	North	East	Ortho Hgt	^
1		XSU92	257998.9800	357763.3720	105.441	
2		RR01	257885.3227	355124.0166	100.645	
3		SR01	254586.4919	355927.3773	82.381	
4		SR02	253034.8393	356093.6672	79.872	
5		SR04	249754.3940	356486.6091	64.374	
6	i	SR05	245976.7564	356615.1406	47.149	
7	,					
8						
9)					
1	0					
1	1					
1	2					
1	3					
1	4					
1	5					v
	c					>
N		Fo delete a station and	la hataanaa lir	hannistiona, class	all the fields in the row. To delete just the station coordinates, clear only the fields to the right of the station name.	
N.	UTE.	i o ucicici a statiori aria	an comiected of	user valuur IS, Ciedi	an are nervs in the row. To delete just the station coordinates, clear only the nervs to the right of the station hadne.	
					Keep and Exit Cancel	Help

Fig. 12: Entering of the NTM Coordinates

Eteje, S. O. et al Int J Sci Res Sci Technol. September-October-2019; 6 (5):128-143

۲						COL	UN.	IBUS	- [No	Nar	ne1]					-	- 1		×
😺 File	View	Data	Ne	etwor	k	Resul	ts	Tools	Optio	ons	Wind	wob	He	lp				-	8 ×
🗅 🖆	🛛 🥔	23	X	Q	к . •л	\triangleright					\boxtimes	#	\leftrightarrow	=		G	4		0.01 ^N e
								•RR01	•XSU9	2									
								●SR()1										
								•SR	02										
	◆SR04																		
								•S	R05										
For Help,	press F1										State	e Plar	ne 30) Viev	v	1 258	3171		Ε //

Fig. 13: Plotted UTM Points in the Software Environment

8. To convert the NTM coordinates to geodetic positions, click on the Tools menu to select Transformation submenu. In the Transformation submenu, select State Plane to Geodetic to display State Plane to Geodetic Zone UD Traverse Mercator dialog box. In the dialog box, click on Compute at the bottom left hand side to display Select Station to

Transform dialog box. In the displayed dialog box, click Select All at the middle right-hand side and click OK at the top right-hand side (see Figure 14). The converted geodetic coordinates are displayed in the State Plane to Geodetic Zone: UD Traverse Mercator dialog box. Also, see Figure 15.

State	Plane> Geodetic - Zone: U	JD Transverse M	ercator,,,TM Approx Ge
Station	Select Stations To Tr	ansform 🛛 🗙	cale Height Scale Combined
Station STAR	Station RR01 SR02 SR04 SR05 XSU92	OK Cancel Help Select All Select None	Scale Height Scale Combined 0000 1.000000000 1.000000
Compute	< >		Toggle SF / PPM

Fig. 14: Selected Points/Stations

Eteje, S. O. et al Int J Sci Res Sci Technol. September-October-2019; 6	(5):128-143
---	-------------

:	State Plane	> Geodetic	c - Zone:	UD Tran	sverse Mercator	"TM Approx Ge
Stat RR01 SR01 SR02 SR04 SR05	North 257885.32270 254586.49190 253034.83930 249754.39400 245976.75640 257998.98000	East 355124.01660 355927.37730 356093.66720 356486.60910 356615.14060 357763.37200	R G 6 0 6 0 6 0	H. Co (0 0.9 0 0.9 0 0.9 0 0.9 0 0.9	Latitude: 6.1721 N 6-19-53.83456 N 6-18-06.37433 N 6-17-15.84381 N 6-15-29.01122 N 6-13-26.00962 N 6-19-57.34702	Longitude: 5.38 E 5-37-27,75969 E 5-37-53,66593 E 5-37-58,96683 E 5-38-11,51979 E 5-38-15,43600 E 5-38-53,64615
Compu	ite Ke	ep In	verse	Report		Toggle SF / PPM

9. To report the converted geographic coordinates, click on Report at the bottom left-hand side of the State Plane to Geodetic Zone: UD Traverse Mercator dialog box to save the converted

coordinates/processing report on either Desktop or in the Documents folder. The processing report is given in both Excel and Notepad. Figure 16 shows the Notepad processing report.

	Report	- Notepad	- 🗆 🗙					
File Edit Format	View Help							
DATE:	09/17/2019 TIME	: 15:30:09	^					
Clarke 1880	Major = 6378249.1	450 1/f = 293.465	00000					
STATE PLANE TO GEODETIC TRANSFORMATION								
UD Transverse Mercator,,,TM								
Standard Merid	ian E 4-30-	00.00000						
Scale Factor 0.9997500000								
Central Parallel N 4-00-00.00000								
False Easting 230738.2660								
False Northing 0.0000								
Station L	at/Lon/Ortho Hgt	GSF/HSF/CSF	SP N/E/Map					
RR01 N	6-19-53.83456	0.999941480	257885.3227					
E	5-37-27.75969	0.999984168	355124.0166					
	100.645	0.999925649	0-07-26.456 🗸					
<			<u>ب</u> ر <					

Fig. 16: Processing Report for Converted Geodetic Coordinates in Notepad

10. Having converted the NTM coordinates to geographic positions then, repeat step 7 to enter the converted geodetic coordinates in the Geodetic tab of the Add or Modify Station Data dialog box.

11. Repeat step 8 to convert the geodetic coordinates to UTM positions. In the Transformation submenu, select Geodetic to UTM.

12. Also, repeat step 9 to report the converted UTM coordinates (see Figure 17).

Eteje, S. O. et al Int J Sci Res Sci Technol. September-October-2019; 6 (5):128-143

	UTM REPORT - Notepad 🛛 🚽 🗖	×						
File Edit Format	View Help							
DATE:	09/17/2019 TIME: 20:24:5	^						
Clarke 1880 Major = 6378249.1450 1/f = 293.46500000								
GEODETIC TO UTM TRANSFORMATION								
Central Meridian E 3-00-00.00000								
Scale Factor 0.9996000000								
False Easting	500000.0000							
False Northing	0.0000							
Approx Geoid Hgt (0.00) Added To Compute Height Scale								
Station	Lat/Lon/Ortho Hgt GSF/HSF/CSF UTM N/	/E						
RRØ1 N	6-19-53.83456 1.000643743 700532.5028	3						
E	5-37-27.75969 1.00000000 790363.1024	1						
	100.645 1.000643743 0-17-22.66	51 🗸						
<		>						

Fig. 17: Processing Report for Converted UTM Coordinates in Notepad

To convert from UTM to NTM with Columbus software, the same procedure is used except for the following:

- 1. In step 7, enter the UTM coordinates in the Add or Modify Station Data dialog box.
- 2. In step 8, select UTM to Geodetic in the Transformation submenu.
- 3. Having converted the UTM coordinates to geodetic positions, repeat step 7 to enter the converted geodetic coordinates in the Geodetic tab of the Add or Modify Station Data dialog box.
- 4. Repeat step 8 to convert the geographic coordinates to NTM positions.
- 5. Also, repeat step 9 to report the converted NTM coordinates.

III. CONCLUSIONS AND RECOMMENDATIONS

Having given detailed procedures for the use of AllTrans and Columbus software for the conversion of coordinates between NTM and UTM systems, the following conclusions and recommendations were made:

1. For effective application of the two software, considering the enumerated steps to be considered, the belt, as well as the zone in which the positions to convert are must be identified before the conversion process. This will enable the right, as well as the correct belt and zone parameters, be entered in the software.

- 2. The Minna datum, as well as Clarke 1880 ellipsoid parameters, should be correctly inputted into the software as the conversion is within Minna datum only. Thus, the Clarke 1880 ellipsoid is common to both coordinate systems in this regard.
- 3. The Edo State branch of the institution (NIS) should get the full and the latest version of the software.
- 4. There should also be a lecture for the practical demonstration of the detailed procedures.

IV. REFERENCES

- Columbus (2009): Columbus 3.8 User Manual. Best Fit Computing Inc. 17490 NW Woodmere Court Beaverton, Oregon 97006 USA.
- [2] Edan, J. D., Amadi, J. W., Bem, A. A. and Amadi, C. A. (2014): On the Conversion of Coordinates from Nigeria Transverse Mercator to Universal Transverse Mercator Using a Simple Mathematical Model. *International Journal of Applied Science and Technology*, Vol. 4, No. 4, pp 292-299.

- [3] Eteje, S. O., Oduyebo, O. F. and Olulade, S. A. (2018). On the Determination of NTM and UTM Positions from Post Processing of Static DGPS Observations on the Nigeria Minna Datum. *International Journal of Engineering Research and Advanced Technology (IJERAT)*, Vol. 4, No. 10, pp 10-24. DOI: 10.31695/IJERAT.2018.3332.
- [4] Eteje, S. O., Oduyebo, O. F. and Olulade, S. A. (2018). Comparative Analysis of Three Geodetic Datum Transformation Software for Application between WGS84 and Minna Datums. *International Journal of Engineering Science and Computing*, Vol. 8, No. 12, pp 19410- 19417.
- [5] Eteje, S. O., Oduyebo, O. F. and Olulade, S. A. (2018): Comparison of the Positions Computed from DGPS/GNSS Observations Using the New/Unified and Various Old Transformation Parameters in Nigeria. *International Journal of Engineering Science and Computing (IJESC),* Vol. 8, No. 12, pp 19378-19385.
- [6] George, N. (2012). AllTrans Geodetic 3D Transformations. http://alltrans.findmysoft.com. Accessed 1st December, 2018.
- [7] Idowu, T. O. (2012). Comparison of Numerical Techniques for Coordinate Transformation: The Case Study of Nigeria Transverse Mercator and Universal Transverse Mercator. *International Journal of Applied Science and Technology*, Vol. 2, No. 4.
- [8] Kiliç, A. (2005). Coordinate Systems for a Naval Virtual Environment. Published M.Sc. Thesis of the Department of Computer Engineering, Middle East Technical University. http://citeseerx.ist.psu.edu/viewdoc/download?d oi=10.1.1.633.1828&rep=rep1&type=pdf. Accessed 14th September, 2019.
- [9] Manchuk, J. G. (2009). Conversion of Latitude and Longitude to UTM Coordinates. *Paper 410, CCG Annual Report 11.*

- [10] Mugnier, C. J., C. P. and C. M. S. (2009). Grids and Datums: Federal Republic of Nigeria. *Photogrammetric Engineering and Remote Sensing.*
- [11] Omoigui, D. A. (1973). The Nigerian Triangulation and the Scale Check Programme. Proceedings of the International Seminar on EDM Measurement. University of Lagos -Nigeria. In Idowu, T. O. (2012). Comparison of Numerical Techniques for Coordinate Transformation: The Case Study of Nigeria Transverse Mercator and Universal Transverse Mercator. International Journal of Applied Science and Technology, Vol. 2 No. 4.
- [12] Ufuah M. E. and Adesina J. G.(2005). Conformal Transformation of Co-Ordinates in Nigeria. https://icaci.org/files/documents/ICC_proceeding s/ICC2005/htm/pdf/oral/TEMA2/Session%201/DR .%20M.E.%20UFUAH%202.pdf. In Eteje, S. O., Oduyebo, O. F. and Olulade, S. A. (2018). On the Determination of NTM and UTM Positions from Post Processing of Static DGPS Observations on the Nigeria Minna Datum. *International Journal of Engineering Research and Advanced Technology (IJERAT)*, Vol. 4, No. 10, pp 10-24. DOI: 10.31695/IJERAT.2018.3332.
- [13] Uzodinma, V. N., Oguntuase, J. O., Alohan, and Dimgba, C. N. (2013): *Practical GNSS Surveying*. Professor's Press Ltd, Enugu.

Cite this article as : Eteje, S. O., Oduyebo, O. F. and Oluyori, P. D. "Procedure for Coordinates Conversion between NTM and UTM Systems in Minna Datum Columbus Software". Using All Trans and International Journal of Scientific Research in Science and Technology (IJSRST), Online ISSN: 2395-602X, Print ISSN: 2395-6011, Volume 6 Issue 5, pp. 128-143, September-October 2019. Available at doi: https://doi.org/10.32628/IJSRST196517 Journal URL: http://ijsrst.com/IJSRST196517