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ABSTRACT 

 

The object of the present paper is to find the fixed points and their stability by matrix method of the duffing 

equation (damped (𝛿 ≠ 0) and unforced / undriven  

(𝛾 = 0))  𝑥̈ + 𝛿𝑥̇ + (𝜈𝑥3 ± 𝜌𝑥) = 𝛾 cos(𝜔𝑡),   

𝑥 = 𝑥(𝑡),   𝑡 = 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑                                                 (1)  

using special case 𝜈 = 1 = 𝜌 and taking the minus sign in (1), it becomes  𝑥̈ + 𝛿𝑥̇ + (𝑥3 − 𝑥) = 0 

The duffing equation can be expressed in 𝑦2(𝑡) and 𝑦̇2(𝑡) shown by MATLAB program and their graphs. 

Keywords :  Duffing Equation, Jacobi Elliptic Functions, Period, Boundedness 

I. INTRODUCTION 

 

The concept of Duffing equation or Duffing Oscillator 

was named after Georg Duffing (1861 - 1944), is a  

non -linear second order differential equation used to 

model certain damped (𝛿 ≠ 0)  and driven (𝛾 ≠ 0)    

oscillators.  

The equation is given by   

𝑥̈ + 𝛿𝑥̇ + (𝜌𝑥 ± 𝜈𝑥3) = 𝛾 cos(𝜔𝑡)                                

(1) 

where 𝑥(𝑡) = displacement at time 𝑡 

        𝑥̇ = 
𝑑

𝑑𝑡
(𝑥(𝑡)) = velocity 

and 𝑥̈ = 
𝑑2

𝑑𝑡2 (𝑥(𝑡)) = acceleration. 

The numbers 𝛿, 𝜌, 𝜈, 𝛾, 𝜔 are given constants. 

 

Parameters 

The parameters of equation (1) are  

• δ   controls the amount of damping 

• ρ   controls the linear stiffness 

• ν   controls the amount of non-linearity  

• γ   is the amplitude of the periodic driving force  

• ω  is the angular frequency of the periodic 

driving             force 

Note 

• If  𝜈 = 0, then (1) describes the damped and  

•            driven simple harmonic oscillator. 

• If  𝛾 = 0, then (1) describes the undamped  

•            oscillator. 

• The restoring force provided by the non-linear  

            spring is  𝜌𝑥 + 𝜈𝑥3                (2) 

Case – I 

If 𝜌 > 0  and 𝜈 > 0 , then (2) is called a hardening 

spring 

Case – II  

If 𝜌 > 0  and 𝜈 < 0 , then (2) is called a softening 

spring 

The number of parameters in (1) can be reduced to 

two through scaling by the excursion 𝑥 and the time t. 

Now, let 𝜏 = 𝑡√𝜌  and  𝑦 =
𝑥𝜌

𝛾
, 𝜌 > 0    and 

substituting it in (1), we get 𝑦̈ + 2𝜂𝑦̇ + 𝑦 + 𝜖𝑦3 =

cos (𝜔𝜏) 

where 𝜂 =
𝛿

2√𝜌
, 𝜖 =

𝜈𝛾2

𝜌2 , 𝜎 =
𝜔

√𝜌
   

and the dots denote differentiation of 𝑦(𝜏)  with 

respect  

to 𝜏. 
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This shows that the solutions to (1) can be described 

in terms of the three parameters 𝜂, 𝜖, 𝜎  with two 

initial conditions 𝑦(𝑡0) and 𝑦̇(𝑡0). 

 

Equilibrium Points 

The equilibrium points stable and unstable are at (2) 

Case - I 

If  𝜌 > 0,  then the equilibrium point is at 𝑥 =  0. 

Case - II 

If  𝜌 < 0  and > 0 , then the equilibrium points are at 

𝑥 =  ±√−
𝜌

𝜈
  

 

Methods of Solution 

Many approximate solutions for the duffing equation 

are  

• By Fourier series method. 

• By Frobenius method which yields a complex 

solution. 

• By numeric methods such as Euler’s method and 

Runge-Kutta. 

• By Homotopy analysis method which yields 

approximate solutions of the duffing equation. 

• In the special case of the undamped (𝛿 = 0) and 

undriven (𝛾 = 0)  duffing equation an exact 

solution can be obtained using Jacobi’s elliptic 

functions. 

II. DAMPED AND UNFORCED DUFFING 

EQUATION BY MATRIX METHOD 

 

The duffing equation is 

𝑥̈ + 𝛿𝑥̇ + (𝜈𝑥3 ± 𝜌𝑥) = 𝛾 cos(𝜔𝑡), 

𝑥 = 𝑥(𝑡),   𝑡 = 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜                                          (1) 

In this chapter, my aim is to find the fixed points and 

their stability by matrix method of the duffing 

equation (damped (𝛿 ≠ 0) and unforced / undriven 

(𝛾 = 0)) using special case 𝜈 = 1 = 𝜌 and taking the 

minus sign in (1) becomes   

𝑥̈ + 𝛿𝑥̇ + (𝑥3 − 𝑥) = 0              (2) 

Now, (2) transforms to a system of first order 

differential equations. (See [4], [10]) 

Setting  

   𝑥̇ = 𝑦                         (3) 

               𝑦̇ = 𝑥 − 𝑥3 − 𝛿𝑦     (4) 

 

Now, for the fixed point, the system of differential 

equations are  

 

         𝑥̇ = 𝑦 = 0 

and  𝑦̇ = 𝑥 − 𝑥3 − 𝛿𝑦 

 ⇒  0 = 𝑥(1 − 𝑥2) − 0  

 ⇒  0 = 𝑥(1 − 𝑥2) 

 ⇒  𝑥(1 − 𝑥2) = 0 

⇒  𝑥 = 0     𝑜𝑟     (1 − 𝑥2) = 0 

⇒  𝑥 = 0     𝑜𝑟     𝑥2 = 1 

⇒  𝑥 = 0     𝑜𝑟     𝑥 = ±1 

∴ The fixed points are (−1, 0), (1, 0)  𝑎𝑛𝑑  (0,   0). 

Analysis of the stability of the fixed points by matrix 

method to be determined. 

Differentiating (3) and (4) gives  

𝑥̈ = 𝑦̇ 

    =  𝑥 − 𝑥3 − 𝛿𝑦 

𝑦̈ = (1 − 3𝑥2)𝑥̇ − 𝛿𝑦̇ 

Which can be written as the matrix equation  

[
𝑥̈
𝑦̈

] = [
0 1

(1 − 3𝑥2) −𝛿
] [

𝑥̇
𝑦̇

] 

Case - I (for (0, 0)) 

The characteristic equation is 

det(𝐴 − 𝜆𝐼) = 0,    

𝜆 = characteristic values which to be determined 

det ([
0 1

(1 − 0) −𝛿
] − [

𝜆 0
0 𝜆

]) = 0 

⇒ det ([
0 − 𝜆 1 − 0
1 − 0 −𝛿 − 𝜆

]) = 0 

⇒ det ([
−𝜆 1
1 −𝛿 − 𝜆

]) = 0      

⇒  −𝜆(−𝛿 − 𝜆) − 1 = 0           

⇒ 𝜆2 +  𝜆𝛿 − 1 = 0 

⇒ 𝜆 =
(−𝛿 ± √𝛿2 − 4 × (−1 ) × 1)

2 × 1
   

⇒ 𝜆0,   0 =
1

2
(−𝛿 ± √𝛿2 + 4) 

Since, 𝛿2 ≥ 0  

So, 𝜆0 ,0 is real. 
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Since, √𝛿2 + 4 > |𝛿| 

𝜆 has one positive root only. 

So, this fixed point (0, 0) is unstable. 

Case II (for (±1,  0)) 

The characteristic equation is 

det ([
0 1

(1 − 3) −𝛿
] − [

𝜆 0
0 𝜆

]) = 0 

⇒ det ([
0 − 𝜆 1 − 0

−2 − 0 −𝛿 − 𝜆
]) = 0 

⇒ det ([
−𝜆 1
−2 −𝛿 − 𝜆

]) = 0 

⇒  −𝜆(−𝛿 − 𝜆) + 2 = 0 

⇒ 𝜆2 +  𝜆𝛿 + 2 = 0 

⇒ 𝜆 =
(−𝛿 ± √𝛿2 − 4 × 2 × 1)

2 × 1
   

⇒ 𝜆±1,   0 =
1

2
(−𝛿 ± √𝛿2 − 8) 

For 𝛿 > 0 

So, 𝜆±1,   0 is imaginary. 

𝜆 has complex roots. 

So, the point (±1, 0) is asymptotically stable. 

Case III  (for Undamped (𝛿 = 0)) 

     𝜆±1,   0 =
1

2
(−𝛿 ± √𝛿2 − 8)  

⇒ 𝜆±1,   0 =
1

2
(0 ± √0 − 8) 

⇒ 𝜆±1,   0 =
1

2
(0 ± √−8) 

⇒ 𝜆±1,   0 =
1

2
(0 ± 𝑖2√2) 

⇒ 𝜆±1,   0 = ±𝑖√2 

Since, 𝛿 = 0 

So, the fixed point 𝜆±1,   0 has an imaginary root and is 

linearly stable. See [10] 

Case IV  for (𝛿 ∈ (−2√2, 0)) 

The fixed point 𝜆±1,   0 has a real root and is unstable. 

Case V  for (𝛿 = −2√2) 

𝜆±1,   0 = √2 

The fixed point 𝜆±1,   0 has a positive real root and is 

unstable. 

Case VI  for (𝛿 < −2√2) 

The fixed points 𝜆±1,   0 are positive real roots and are 

unstable. 

 

III. SOLUTIONS AND GRAPHS OF ISPLACEMENT 

AND VELOCITY FOR DUFFING EQUATION 

USING MATLAB 

Consider the duffing equation 

𝑥̈ + 𝛿𝑥̇ + (𝜈𝑥3 ± 𝜌𝑥) = 𝛾 cos(𝜔𝑡)   (1) 

𝑤ℎ𝑒𝑟𝑒 𝑥 = 𝑥(𝑡),   𝑡 = 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 

Substituting  𝑦1(𝑡) = 𝑥(𝑡)  𝑎𝑛𝑑  𝑦2(𝑡) = 𝑥̇(𝑡) and plus 

sign in (1), we get 

 

𝑦̇1(𝑡) =  𝑥̇(𝑡) =  𝑦2(𝑡) 

𝑦̇2(𝑡) =  𝑥̈(𝑡) 

           =  −𝛿𝑦2(𝑡) − 𝜌𝑦1(𝑡) − 𝜈𝑦1
3(𝑡) + 𝛾cos (𝜔𝑡) 

Consider the parameters 𝜌 =  1, 𝜈 =  −1, 𝛾 =  3,   

𝛿 =  2, 𝜔 = 1. 

In this chapter, the duffing equation can be expressed 

in 𝑦2(𝑡) and 𝑦̇2(𝑡) shown by MATLAB program and 

their graphs. (see [4], [1], [10]) 

 

Program : 

M-file 

function dydt = duffing_2(t, y) 

%Local parameters 

rho = 1; 

nu = -1; 

gamma = 3; 

delta = 2; 

omega = 1; 

%State vector is [y(t); ydot(t)]; 

dydt(1) = y(2); 

dydt(2) = -delta*y(2)-rho*(y(1))- 

       nu*(y(1)^3)+gamma*cos(omega*t); 

dydt = dydt'; 

return 

 

 

Command Window : 

>> figure 

>> [t, y] = ode45(@duffing_2, [0 , 5],   

                  [0 ; 0]); 

>> p = plot(t, y, '*') 

>> title('DUFFING EQUATION : \rho = 1,  
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          \nu = -1, \gamma = 3,  

          \delta = 2, \omega = 1') 

>> xlabel('Time (t) in sec') 

>> ylabel('Solution y2(t) and      

           Derivative of y2(t)') 

>> legend('y2(t)', ‘Derivative of y2(t)') 

 

IV. Result 

t = 

         0  

    0.0000  

    0.0000  

    0.0001  

    0.0001  

    0.0002  

    0.0002  

    0.0003  

    0.0004  

    0.0008  

    0.0012  

    0.0017  

    0.0021  

    0.0042  

    0.0063  

    0.0084  

    0.0104  

    0.0209  

    0.0314  

    0.0418  

    0.0523  

    0.0947  

    0.1372  

    0.1796  

    0.2220  

 

    0.2953 

    0.3686 

    0.4419 

    0.5152 

    0.6129 

    0.7106 

    0.8083 

    0.9059 

    1.0001 

    1.0943 

    1.1885 

    1.2827 

    1.3813 

    1.4799 

    1.5785 

    1.6771 

    1.7690 

    1.8609 

    1.9528 

    2.0447 

    2.1367 

    2.2286 

    2.3205 

    2.4124 

    2.4945 

 

    2.5766 

    2.6587 

    2.7409 

    2.8418 

    2.9428 

    3.0438 

    3.1448 

    3.2631 

    3.3814 

    3.4997 

    3.6179 

    3.7429 

    3.8679 

    3.9929 

    4.1179 

    4.2313 

    4.3447 

    4.4580 

    4.5714 

    4.6785 

    4.7857 

    4.8928 

    5.0000 

 

 

 

 

 

 

 

y = 

 

 

         0         0 

    0.0000    0.0001 

    0.0000    0.0001 

    0.0000    0.0002 

    0.0000    0.0002 

    0.0000    0.0005 

    0.0000    0.0007 

    0.0000    0.0010 

    0.0000    0.0012 

    0.0000    0.0025 

    0.0000    0.0037 

    0.0000    0.0050 

    0.0000    0.0062 

    0.0000    0.0125 

    0.0001    0.0187 

    0.0001    0.0249 

    0.0002    0.0310 

    0.0006    0.0614 

    0.0014    0.0912 

    0.0026    0.1204 

    0.0040    0.1489 

    0.0126    0.2581 

    0.0257    0.3575 

    0.0428    0.4476 

    0.0636    0.5286 

    0.1068    0.6484 

    0.1580    0.7444 

    0.2154    0.8184 

    0.2775    0.8724 

    0.3651    0.9169 

    0.4556    0.9337 

    0.5467    0.9272 

    0.6363    0.9021 

    0.7196    0.8649 

    0.7988    0.8175 

    0.8733    0.7624 

    0.9424    0.7023 

    1.0084    0.6358 

    1.0677    0.5666 

    1.1201    0.4956 

    1.1653    0.4228 

    1.2010    0.3533 

    1.2303    0.2818 

    1.2528    0.2078 

    1.2683    0.1308 

    1.2767    0.0498 

    1.2774   -0.0357 

    1.2700   -0.1261 

    1.2540   -0.2220 

    1.2321   -0.3126 

    1.2026   -0.4076 

    1.1650   -0.5066 

    1.1192   -0.6088 

    1.0513   -0.7376 

    0.9704   -0.8665 

    0.8765   -0.9915 

    0.7703   -1.1081 

    0.6320   -1.2273 

    0.4811   -1.3194 

    0.3212   -1.3780 

    0.1565   -1.3995 

   -0.0176   -1.3817 

   -0.1870   -1.3256 

   -0.3475   -1.2371 

   -0.4957   -1.1260 

   -0.6170   -1.0143 

   -0.7252   -0.8962 

   -0.8200   -0.7755 

   -0.9012   -0.6548 

   -0.9654   -0.5419 

   -1.0175   -0.4298 

   -1.0575   -0.3179 

   -1.0854   -0.2048 
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p = 

  174.0133 

  175.0128 

 

Graph :  
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