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ABSTRACT 

 

The object of the present paper is to introduce the extension of the concept of Banach limits for vector valued 

sequences and we prove the existence of Banach limits for vector valued sequences. Also introduced Banach 

spaces 𝑋, 𝑋∗, 𝑋∗∗  1-complemented in their bi duals admit vector valued Banach limits. Lastly we propose 

Lorentz’s vector valued intrinsic characterisation of almost convergence. 
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I. INTRODUCTION & PRELIMINARIES 

 

The existence of Banach limit functionals was proven 

by Banach (see [6]) in 1932. Using Banach limits, in 

1948, Lorentz (see [4]) introduced the notion of 

almost convergence, which is a generalization of 

usual convergence of real sequences. Again in 1932 

Theorie des operations lineaires (see [6]) Banach 

extended, in a natural way, operation of taking limit 

defined on the space of all convergent real sequences 

to the space of all bounded real sequences. Lorentz 

proposed a bounded sequence (𝑥𝑛)𝑛∈ℕ ∈ 𝑙∞ is called 

almost convergent if there exists a number 𝑦 ∈ ℝ 

(called the almost limit of (𝑥𝑛)𝑛∈ℕ ) such that 

𝜑((𝑥𝑛)𝑛∈ℕ) = 𝑦 for all Banach limits 𝜑 ∶ 𝑙∞ → ℝ. 

His criterion for almost convergence that a bounded 

sequence (𝑥𝑛)𝑛∈ℕ ∈ 𝑙∞ is almost convergent to a real 

number 𝑦 if and only if  

lim
𝑝→∞

1

𝑝+1
∑ 𝑥𝑛+𝑘

𝑝
𝑘=0 = 𝑦 uniformly in 𝑛 ∈ ℕ 

This criterion is known as Lorentz intrinsic 

characterisation of almost convergence. 

In (see [5]) intrinsic characterisation as a model for 

extending the concept of almost convergence to 

vector valued sequences. 

A sequence (𝑥𝑛)𝑛∈ℕ is a real normed space 𝑋 is called 

almost convergence, if there exists 𝑦 ∈ 𝑋 (called the 

almost limit of (𝑥𝑛)𝑛∈ℕ and denoted by 𝐴𝐶 lim
𝑙→∞

𝑥𝑛 =

𝑦) such that lim
𝑝→∞

1

𝑝+1
∑ 𝑥𝑛+𝑘

𝑝
𝑘=0 = 𝑦 uniformly in 𝑛 ∈

ℕ.  

In (see [5]) every convergent sequence must be 

bounded.  

In fact, given a real normed space 𝑋, the set 𝑎𝑐(𝑋) of 

all almost convergent sequences in 𝑋  is a closed 

subspace of 𝑙∞(𝑋).  

On the other hand, the operation of taking almost 

limit, which is defined as  

𝐴𝐶 lim : 𝑎𝑐(𝑋) → 𝑋,  

(𝑥𝑛)𝑛∈ℕ → 𝐴𝐶 lim
𝑙→∞

𝑥𝑛                                                

is a norm – 1 continuous linear operator (see [1], [5]). 

Next we present a vector valued version of Lorentz 

almost convergence intrinsic characterisation. 

The scope of this paper is  

Section 2 : The existence of Banach limit for vector 

valued sequences. 

Section 3 : Investigation of Lorentz intrinsic 

characterisation of almost convergence. 
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II. THE EXISTENCE OF BANACH LIMITS FOR 

VECTOR VALUED SEQUENCES 

 

Definition 1 : 

A linear function 𝜑 ∶ 𝑙∞ → ℝ is called a Banach limit 

if 

(i) 𝜑((𝑥𝑛)𝑛∈ℕ) ≥ 0 for (𝑥𝑛)𝑛∈ℕ ∈ 𝑙∞ such that  

     𝑥𝑛 ≥ 0, ∀ 𝑛 ∈ ℕ 

(ii) 𝜑((𝑥𝑛)𝑛∈ℕ) = 𝜑((𝑥𝑛+1)𝑛∈ℕ) for (𝑥𝑛)𝑛∈ℕ ∈ 𝑙∞ 

(iii) 𝜑(1) = 1, where 1 denotes the constant  

       sequence of ones. 

A linear function 𝜑 ∶ 𝑙∞ → ℝ is a Banach limit if and 

only if 𝜑 is invariant under the shift operator on 𝑙∞ 

and lim inf
𝑛→∞

𝑥𝑛 ≤ 𝜑((𝑥𝑛)𝑛∈ℕ)  

≤ lim sup
𝑛→∞

𝑥𝑛 , ∀ (𝑥𝑛)𝑛∈ℕ ∈ 𝑙∞ 

Every Banach limit 𝜑 ∶ 𝑙∞ → ℝ  satisfies the 

conditions  

(i) 𝜑|𝑐 = lim  

(ii) ‖𝜑‖ = 1 

 

Therefore, Banach limits are norm – 1 Hahn-Banach 

extensions of the limit operation from 𝑐 to 𝑙∞. 

On the other hand, in 2010 Semenov and Sukochev 

(see  [3]) studied invariant Banach limits and proved 

the existence of a Banach limit 𝐵 such that 𝐵 = 𝐵 𝑜 𝐻 

for all bounded linear operators 𝐻  on 𝑙∞  satisfying 

easily verifiable conditions. 

 

The concept of Banach limit to the vector valued case 

were made in (see [2], [7]). In order to extend the 

concept of Banach limit to vector valued sequence it 

suffices to notice that if 𝜓 ∈ 𝑆𝑙∞
∗  (by 𝑆  with a 

subscript we denote the unit sphere in the 

corresponding space) and 𝜓(1) = 1 , then 𝜓  satisfies 

condition (𝑖)  in Definition 1 : if (𝑥𝑛)𝑛∈ℕ ∈ 𝑆𝑙∞
 and 

𝑥𝑛 ≥ 0, ∀ 𝑛 ∈ ℕ, then (1 − 𝑥𝑛)𝑛∈ℕ ∈ 𝐵𝑙∞
 (by 𝐵 with 

a subscript we denote a ball in the corresponding 

space). 

 

Hence 1 = 𝜓(1) = 𝜓((𝑥𝑛)𝑛∈ℕ) + 𝜓((1 − 𝑥𝑛)𝑛∈ℕ) 

≤ 𝜓((𝑥𝑛)𝑛∈ℕ) + 1 

Bearing this is mind, we can define a Banach limit for 

real bounded sequences as follows : A functional 𝜑 ∶

𝑙∞ → ℝ is a Banach limit if and only if 𝜑 ∈ 𝑆𝑙∞
∗ ,  𝜑 is 

invariant under the shift operator on 𝑙∞  and 𝜑|𝑐 =

lim  

 

Now, define Banach limits for vector-valued 

sequences. 

 

Definition 2: 

Let 𝑋 be a real normed space. 

The set of vector valued Banach limits on 𝑋 is defined 

as ℬ ℒ(𝑋) = 𝑆𝒞ℒ(𝑙∞(𝑋),𝑋) ∩ 𝒩𝑋 ∩ ℒ𝑋  where 

𝒞ℒ(𝑙∞(𝑋), 𝑋)  denotes the space of all continuous 

linear operators 𝑇 ∶ 𝑙∞(𝑋) → 𝑋  and 𝒩𝑋  denotes the 

set of all continuous linear operators 𝑇 ∶ 𝑙∞(𝑋) → 𝑋 

which are invariant under the shift operator on 𝑙∞(𝑋) 

and ℒ𝑋  denotes the set of all continuous linear 

operators 𝑇 ∶ 𝑙∞(𝑋) → 𝑋 which are extensions of the 

limit operation on 𝑐(𝑋). 

 

Theorem 1: 

Let 𝑋∗ be a real dual Banach space. 

Then there exists a Banach limit 𝜑 ∈  ℬℒ(𝑋∗)  such 

that if (𝑥𝑛
∗ )𝑛∈ℕ ∈ 𝑙∞(𝑋∗) is 𝜔∗ - Cesaro convergent to 

𝑥∗ ∈ 𝑋∗, then 𝜔((𝑥𝑛
∗ )𝑛∈ℕ) = 𝑥∗ 

 

proof :  

Consider the filter on ℕ consisting of the sets  

{𝐴 ⊆ ℕ ∶ ℕ\𝐴 is finite}. 

There exists a functional ℱ on ℕ containing this  

filter. Obviously, ℱ is not of the form  

𝒰𝑛 = {𝐴 ⊆ ℕ ∶ 𝑛 ∈ 𝐴},  for any 𝑛 ∈ ℕ 

We set 𝜑 ∶ 𝑙∞(𝑋∗) → 𝑋∗,  

(𝑥𝑛
∗ )𝑛∈ℕ → ℱ − lim

𝑥1
∗ + ⋯ + 𝑥𝑛

∗

𝑛
 

(1) The map 𝜑 is well defined. 

Indeed, note that 𝐵𝑋∗(0, ‖(𝑥𝑛
∗ )𝑛∈ℕ‖∞) endowed with 

the 𝜔∗ - topology compact and Hausdoff. Since, every 

http://www.ijsrst.com/
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function on a compact Hausdoff topological space is 

convergent to a unique limit, we deduce that ℱ −

lim
𝑥1

∗+⋯+𝑥𝑛
∗

𝑛
 exists and belongs to 𝐵𝑋∗(0, ‖(𝑥𝑛

∗ )𝑛∈ℕ‖∞). 

(2) The map 𝜑 is linear and continuous and has norm 

1. Indeed, it follows from assertion (1) above that 

‖𝜑‖ ≤ 1. In order to see that ‖𝜑‖ = 1, it suffices to 

consider any constant sequence of norm 1. 

(3) The condition 𝜑|𝑐(𝑋∗) = lim holds. Indeed, if 

(𝑥𝑛
∗ )𝑛∈ℕ  is a sequence in 𝑋∗  converging to 𝑥∗ ∈ 𝑋∗ , 

then (
𝑥1

∗+⋯+𝑥𝑛
∗

𝑛
)

𝑛∈ℕ
 converges to 𝑥∗. 

Therefore, (
𝑥1

∗+⋯+𝑥𝑛
∗

𝑛
)

𝑛∈ℕ
𝜔∗ - converges to 𝑥∗. 

Hence, ℱ − lim
𝑥1

∗+⋯+𝑥𝑛
∗

𝑛
= 𝑥∗  by the construction of 

the ultrafilter ℱ. 

(4) The map  𝜑 is invariant under the shift operator. 

Indeed, for every (𝑥𝑛
∗ )𝑛∈ℕ ∈ 𝑙∞(𝑋∗) we have  

𝜑((𝑥𝑛+1
∗ − 𝑥𝑛

∗ )𝑛∈ℕ) = ℱ − lim
𝑥1

∗ + ⋯ + 𝑥𝑛
∗

𝑛
= 0 

Since, (
𝑥1

∗+⋯+𝑥𝑛
∗

𝑛
)

𝑛∈ℕ
 converges to 0. 

(5) If (𝑥𝑛
∗ )𝑛∈ℕ ∈ 𝑙∞(𝑋∗) is 𝜔∗ - Cesaro convergent  

to 𝑥∗ ∈ 𝑋∗, then 𝜑((𝑥𝑛
∗ )𝑛∈ℕ). Indeed, (

𝑥1
∗+⋯+𝑥𝑛

∗

𝑛
)

𝑛∈ℕ
 is 

𝜔∗ - convergent to 𝑥∗, whence  

ℱ − lim
𝑥1

∗ + ⋯ + 𝑥𝑛
∗

𝑛
= 𝑥∗ 

Note :  

If 𝑋 is a real Banach space, 𝜑 ∈ ℬℒ(𝑋) and 𝑌 is a  1 – 

complimented subspace of 𝑋 , then 𝑙∞(𝑌) → 𝑌 , 

(𝑦𝑛)𝑛∈ℕ → 𝑝(𝜑((𝑦𝑛)𝑛∈ℕ))  is a Banach limit on 𝑌 , 

where 𝑝 ∶ 𝑋 → 𝑌 is a norm – 1 projection. 

Thus, we have the following corollary 

 

Corollary 1 :  

Let 𝑋 be a real Banach space.  

If 𝑋 is a 1 – complemented in 𝑋∗∗ 

then ℬℒ(𝑋) ≠ 𝜙. 

This is well known. 

 

Example: A Banach space free of vector valued  

Banach limits is 𝑐0(ℬℒ(𝑐0) = 𝜙) 

Indeed if 𝜑 ∈ ℬℒ(𝑐0) 

then the map 𝑝 ∶ 𝑙∞ → 𝑐0,   

(𝑦𝑛)𝑛∈ℕ  

→ 𝜑((𝑦1, 0, 0, … ), (𝑦2, 𝑦2, 0, 0, … ), (𝑦3, 𝑦3, 𝑦3, 0, 0, … ), … ) 

is a bounded linear projection, which can not exists. 

Since, 𝑐0 is not complemented in 𝑙∞ 

 

III. Lorentz’ vector valued intrinsic characterisation of 

almost convergence  

 

A bounded sequence (𝑥𝑛)𝑛∈ℕ ∈ 𝑙∞  is called almost 

convergent if there exists a number 𝑦 ∈ ℝ (called the 

almost limit of (𝑥𝑛)𝑛∈ℕ) such that 𝜑((𝑥𝑛)𝑛∈ℕ) = 𝑦 for 

all Banach limits 𝜑 ∶ 𝑙∞ → ℝ. 

Lorentz proposed the following criterion for almost 

convergence : A bounded sequence (𝑥𝑛)𝑛∈ℕ ∈ 𝑙∞  is 

almost convergent to a real number 𝑦 if and only if  

lim
𝑝→∞

1

𝑝+1
∑ 𝑥𝑛+𝑘

𝑝
𝑘=0 = 𝑦 uniformly in 𝑛 ∈ ℕ 

This criterion is known as Lorentz intrinsic 

characterisation of almost convergence. 

In (see [5]) intrinsic characterisation as a model for 

extending the concept of almost convergence to 

vector valued sequences. 

A sequence (𝑥𝑛)𝑛∈ℕ is a real normed space 𝑋 is called 

almost convergence, if there exists a 𝑦 ∈ 𝑋 (called the 

almost limit of (𝑥𝑛)𝑛∈ℕ and denoted by 𝐴𝐶 lim
𝑙→∞

𝑥𝑛 =

𝑦) such that lim
𝑝→∞

1

𝑝+1
∑ 𝑥𝑛+𝑘

𝑝
𝑘=0 = 𝑦 uniformly in 𝑛 ∈

ℕ.  

In (see [5]) every convergent sequence must be 

bounded.  

In fact, given a real normed space 𝑋, the set 𝑎𝑐(𝑋) of 

all almost convergent sequences in 𝑋  is a closed 

subspace of 𝑙∞(𝑋).  

On the other hand, the operation of taking almost 

limit, which is defined as  

𝐴𝐶 lim : 𝑎𝑐(𝑋) → 𝑋,  

(𝑥𝑛)𝑛∈ℕ → 𝐴𝐶 lim
𝑙→∞

𝑥𝑛                                                (1) 

is a norm – 1 continuous linear operator (see [1], [5]). 

Next, we represent a vector valued version of Lorentz 

intrinsic characterisation of almost convergence. 

In fact we prove 

http://www.ijsrst.com/
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.Theorem 2: 

Let 𝑋  be a real normed space and let (𝑥𝑛)𝑛∈ℕ  be a 

bounded sequence in 𝑋. 

Then the following conditions are equivalent : 

(A) (𝑥𝑛)𝑛∈ℕ is almost convergent to 0 in 𝑋 

(B) 𝑇((𝑥𝑛)𝑛∈ℕ) = 0, ∀ 𝑇 ∈ 𝒩𝑋 

 

Proof  (A) : 

Assume that (𝑥𝑛)𝑛∈ℕ is almost convergent to 0 in 𝑋 

Fix 𝑇 ∈ 𝒩𝑋{0}. 

We set 𝑠 = 𝑇((𝑥𝑛)𝑛∈ℕ). 

Let us show that ‖𝑠‖ < 𝜖, ∀ 𝜖 > 0. 

Taking an arbitrary 𝜖 > 0 

There exists a 𝑝 ∈ ℕ such that  

‖
1

𝑝 + 1
∑ 𝑥𝑛+𝑘

𝑝

𝑘=0

‖ <
𝜖

‖𝑇‖
, ∀  𝑛 ∈ ℕ 

 

We observe that  

𝑠 = 𝑇(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, … ) 

𝑠 = 𝑇(𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, … ) 

𝑠 = 𝑇(𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, … ) 

… … … … … … … … … …. 

𝑠 = 𝑇(𝑥𝑝+1, 𝑥𝑝+2, 𝑥𝑝+3, 𝑥𝑝+4, 𝑥𝑝+5, … ) 

Therefore,  

(𝑝 + 1)𝑠 = 𝑇(𝑥1 + ⋯ + 𝑥𝑝+1, 𝑥2 + ⋯ + 𝑥𝑝+2, … ) 

⇒ 𝑠 = 𝑇 (
𝑥1 + ⋯ + 𝑥𝑝+1

𝑝 + 1
,
𝑥2 + ⋯ + 𝑥𝑝+2

𝑝 + 1
 , … ) 

⇒ ‖𝑠‖ = ‖𝑇 (
𝑥1 + ⋯ + 𝑥𝑝+1

𝑝 + 1
,
𝑥2 + ⋯ + 𝑥𝑝+2

𝑝 + 1
 , … )‖ 

    ≤ ‖𝑇‖ ‖(
1

𝑝 + 1
∑ 𝑥𝑛+𝑘

𝑝

𝑘=0

)

𝑛∈ℕ

‖

∞

 

                  < 𝜖 

Proof (B): 

Assume that 𝑇((𝑥𝑛)𝑛∈ℕ) = 0, ∀ 𝑇 ∈ 𝒩𝑥  and suppose 

that (𝑥𝑛)𝑛∈ℕ  is not almost convergent to 0. 𝑏𝑝𝑠(𝑋) 

(the set of sequences in 𝑋 with bounded partial sums) 

coincides with the set  

{(𝑧𝑛+1 − 𝑧𝑛)𝑛∈ℕ ∶  (𝑧𝑛)𝑛∈ℕ ∈ 𝑙∞(𝑋)} 

On the other hand, all sequences of the form (𝑧𝑛+1 −

𝑧𝑛)𝑛∈ℕ , where (𝑧𝑛)𝑛∈ℕ ∈ 𝑙∞(𝑋) , are almost 

convergent to 0. 

Since, the almost limit operation (see eq(1)) is 

continuous and 𝑎𝑐(𝑋) is closed in 𝑙∞(𝑋), we deduce 

that the space of all sequences almost convergent to 0 

is also closed in 𝑙∞(𝑋). 

Now, consider the continuous linear map  

𝑆 ∶ 𝑏𝑝𝑠(𝑋) ⊕ ℝ(𝑥𝑛)𝑛∈ℕ → ℝ𝑥 ⊆ 𝑋,   

(𝑧𝑛+1 − 𝑧𝑛 + 𝜆𝑥𝑛)𝑛∈ℕ → 𝜆𝑥 

where 𝑥 ∈ 𝑋/{0} can be chosen arbitrarily. 

By the Hahn-Banach theorem we can extend 𝑆 to a 

continuous linear operator  

𝑆̂ ∶ 𝑙∞(𝑋) → ℝ𝑥 ⊆ 𝑋 

Note that 𝑆̂ ∈ 𝒩𝑋 

This contradicts to 𝑆((𝑥𝑛)𝑛∈ℕ) = 𝑥 ≠ 0 

Hence the Theorem. 

Corollary 2: 

Let 𝑋 be a real normed space . If (𝑥𝑛)𝑛∈ℕ is a  

sequence in 𝑋 almost convergent to 𝑥 ∈ 𝑋, then  

𝑇((𝑥𝑛)𝑛∈ℕ) = 𝑥, ∀  𝑇 ∈ 𝒩𝑋 ∩ ℒ𝑋. 

In particular, 𝜑((𝑥𝑛)𝑛∈ℕ) = 𝑥, ∀ 𝜑 ∈ ℬℒ(𝑋) 

Corollary 3: 

Let 𝑋 be a real normed space. Then ℬℒ(𝑋) coincides 

with the set of all norm – 1 Hahn-Banach extensions 

of 𝐴𝐶 lim  to the whole space 𝑙∞(𝑋). 
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