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ABSTRACT 

 

The inability to speak is considered to be a true disability. People with this disability use different modes to 

communicate with others, the hand gesture is one of the methods used in sign language for non-verbal 

communication. Developing sign language application for deaf people are often vital, as they’ll be ready to 

communicate easily with even those that don’t understand language. This paper presents a unique sign language 

recognition system that comprises of two-stage: Tracking and Representation. In the hand tracking phase, a 

hand dataset is used to extract the hand tract to pre-train Convolutional Neural Network hand models. The 

hand tracking is performed by the particle filter that associate with hand motion and CNN pre-trained hand 

models into a joint circumstance observation model. The predicted hand position corresponds to the situation 

of the particle with the best joint circumstance. Based on the predicted hand position is segmented and is the 

input to the hand representation phase. 

Keywords : Sign Language Recognition, Convolutional Neural Network, Recurrent Neural Network, ISL 

 

 

I. INTRODUCTION 

 

The motion of any body part like a face, a hand is a 

form of gesture. Here for gesture recognition, we are 

using image processing and computer vision. Gesture 

recognition enables a computer to know human 

actions and also acts as an interpreter between 

computers and humans. This could provide the 

potential for humans to interact naturally with the 

computers without any physical contact of the 

mechanical devices.[1] 

 

Sign language is additionally serving a similar 

meaning as speech communication does. This is used 

by the deaf and dumb community all over the world 

but in their regional form like ISL, ASL. Sign language 

are often performed by using Hand gesture either by 

one hand or two hands.[3] It is of two types Isolated 

sign language and continuous sign language. Isolated 

sign language consists of a single gesture having a 

single word while continuous ISL or Continuous Sign 

language is a sequence of gestures that generate a 

meaningful sentence. 

 

TABLE I : Major Components of SLR 

 

Deaf people around the world communicate using sign 

language as distinct from speech communication in 

their everyday a visible language that uses a system of 

manual, facial and body movements as the means of 

Fingerspelling Word level sign 

vocabulary 

No manual features 

Used to 

spell words 

letter by 

letter . 

Used for the 

majority of 

communicatio

n. 

Facial 

expressions and 

tongue, mouth 

and body 

position. 
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communication.[2] Sign language isn't a universal 

language, and different sign languages are utilized in 

different countries, just like the many spoken 

languages everywhere the planet. 

 
Fig 1: Finger Spelling Indian Sign Language [4] 

II. RELATED WORK 

  

A lot of research has been done in the field of sign 

language recognition using various approaches. Many 

methods are used for the conversion of Indian sign 

language into text. Various methods are deployed, 

each having its advantages and disadvantages. Many 

such employed are for the conversion of ASL to text. 

The same methods could be applied to interpret the 

ISL as well.   

 

• KarAradhana and Pinaki Sankar 

Chatterje published the paper on “A Video-based 

Approach for Translating Sign Language to Simple 

Sentence in English” in 2013. In this paper, the 

first method uses a video-based approach for 

translating the sign to the equivalent sentence in 

English. It consists of 3 modules. The first module 

is the video processing module.[5]   

• Ashish S. Nikam Aarti G. Ambekar published the 

paper on “Sign Language Recognition Using 

Image-Based Hand Gesture Recognition 

Techniques” in 2016. In this paper, the second 

method uses an Artificial Neural Network to 

interpret the ISL. It consists of getting the image 

and Preprocessing it to refine it, segmentation of 

the hand area, extraction of features, and final 

classification.  [6] 

• Paulraj M P, Sazali Yaacob, Mohd Shuhanaz Zanar 

Azalan, and Rajkumar Palaniappan, published the 

paper on “A Phoneme Based Sign Language 

Recognition System using 2D Moment Invariant 

Interleaving feature and Neural Network” on 

2011. In this paper, a phoneme based method is 

also used to recognize the sign language. There are 

44 phonemes in the English language; therefore 44 

gestures can be formed. [7]   

• Rakesh.B. S, Tamilarasan.S, Avinash N published 

the paper on “Hand Gesture Recognition based on 

Real-time Indian Sign Language”. In this paper, 

we are introducing Hand Gesture Recognition, 

which will display messages based on input 

gestures. All input images are captured by a web 

camera. The proposed system doesn’t require to be 

trained every time. [8]   

 

III. METHODOLOGY 

 

 
Fig 2 : Common Flow for training images using faster 

 r-cnn 

 

• First, we will extract the frames from the 

multiple video sequences of each gesture. 

• After the first step, noise from the frames i.e 

background, body parts other than hand are 

removed to extract more relevant features 

from the frame. 

• training on the spatial features. We have used 

inception model for this purpose which is a 

deep neural net. 

• Store the train and test frame predictions. 

We’ll use the model obtained in the above step 

for the prediction of frames. 

• The predictions of the train data are now 

given to the RNN model for training on the 

temporal features. We have used LSTM model 

for this purpose.[9] 

 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) 

  

 

 
50 

 
Fig 3 : System architecture for object classification 

using faster r-cnn 

 

In further subsections of this section, each step of the 

methodology has been shown diagrammatically for a 

better understanding of that step. 

 

1. Frame Extraction and Background Removal 

 

The input symbols involve various background data 

which can be considered as noise or outliers. Then 

with the assistance of the color intensity variation 

and edge detection, gestures are recognized. The 

Gestures are recognized with the edge detection. 

Further, the image needs pre-processing for the 

accurate gesture detection. 

  

 
Fig 4 : Frame after extracting hands 

 

The image with a detected edge is then moved for 

edge filtering. An image filter for background 

subtraction is implemented. The background image 

is omitted with the removal of the components 

outside the sting detected. The edge contains a 

number of the input file which will not be 

recognized for filtering. A threshold value is a 

reference to the intensity of the info that's 

processed. The portion of the image that matches the 

intensity value is retained are filtered.[11] 

  

2. Train CNN(Spatial Features) and Prediction 

 

A Convolutional Neural Network (ConvNet/CNN) 

may be a Deep Learning algorithm that may absorb 

an input image, assign importance (learnable weights 

and biases) to varied aspects/objects within the 

image and be able to differentiate one from the 

other.[12] 

 

 
Fig 5: Frame Extraction and prediction using faster 

CNN. 

 

3. Train RNN (Temporal Features) 

 

Recurrent Neural Network(RNN) is a kind of Neural 

Network where the output from the previous step is 
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fed as input to the present step. In traditional neural 

networks, all the inputs and outputs are independent 

of every other, but in cases like when it's required to 

predict subsequent word of a sentence, the previous 

words are required and hence there's a requirement 

to recollect the previous words. Thus RNN came 

into existence, which solved this issue with the 

assistance of a Hidden Layer.[14] [15] 

 

 
Fig 6: Object deduction using faster RNN 

 

IV. ALGORITHMS 

 

A. Convolutional Neural Network (CNN) 

 

A simple ConvNet is a sequence of layers, and each 

layer of a ConvNet transforms one volume of 

activations to a different through a differentiable 

function. We use three main types of layers to 

form ConvNet architectures: Convolutional Layer, 

Pooling Layer, and Fully-Connected Layer (exactly 

as seen in regular Neural Networks), We now 

describe the individual layers and the details of 

their hyperparameters and their connectivity.[9] 

 

Convolutional Layer 

The Convolutional Layer is that the core building 

block of a Convolutional Network that does most 

of the computational work. It gets as input a matrix 

of the dimensions [h1 * w1 * d1], which is the blue 

matrix in the fig[13] 

  

Spatial arrangement.  

Three hyperparameters control the dimensions of 

the output volume: the depth, stride, and zero-

padding. We discuss these next: 

a. First, the depth of the output volume could be 

a hyperparameter: it corresponds to the 

number of filters we might prefer to use, each 

learning to appear for something different in 

the input. For example, if the first 

Convolutional Layer takes as input the raw 

image, then different neurons along the depth 

dimension may activate within the presence of 

varied oriented edges, or blobs of color. We 

will ask a group of neurons that are all 

watching an equivalent region of the input as 

a depth column (some people also prefer the 

term fiber). 

b. Second, we must specify the stride with which 

we slide the filter. When the stride is 1 then 

we move the filters one pixel at a time. When 

the stride is 2 (or uncommonly 3 or more, 

though this is often rare in practice) then the 

filters jump 2 pixels at a time as we slide them 

around. This will produce smaller output 

volumes spatially. 

c. As we will soon see, sometimes it will be 

convenient to pad the input volume with 

zeros around the border. The size of this zero-

padding is a hyperparameter. The nice feature 

of zero paddings is that it'll allow us to 

regulate the spatial size of the output volumes 

(most commonly as we’ll see soon we'll use it 

to precisely preserve the spatial size of the 

input volume, therefore, the input and output 

width and height are the same). 

              

 
Fig 7: Convolutional Layer 

 

A kernel may be a matrix with the size [h2 * w2 * 

d1], which is one yellow cuboid of the multiple 

cuboids (kernels) stacked on top of every other (in 

the kernels layer) in the above image. For each 
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convolutional layer, there are multiple kernels 

stacked on top of every other, this is often what 

forms the yellow 3-dimensional matrix in Fig 2, 

which is of dimensions [h2 * w2 * d2], where d2 is 

that the number of kernels. For each kernel, we've 

its respective bias, which may be a scalar quantity. 

And then, we have an output for this layer, the 

green matrix in Fig 2, which has dimensions [h3 * 

w3 * d2]. 

Let’s throw light on some obvious things from 

above. 

1. The depth (d1) (or the number of channels) of 

the input and one kernel is the same. 

2. The depth (d2) of the output is equal to the 

number of kernels (i.e. the depth of the orange 

3-dimensional matrix). 

All right, so we have inputs, kernels, and outputs. 

Now let’s check out what happens with a 2D input 

and a 2D kernel, i.e. d1=1. For each position of the 

kernel on the image, each number on the kernel 

gets multiplied with the corresponding number on 

the input matrix (blue matrix) then all of them are 

summed up for the worth within the 

corresponding position within the output matrix 

(green matrix). With d1 > 1, an equivalent thing 

occurs for every one of the channels then they're 

added up together then summed up with the bias 

of the respective filter and this forms the value in 

the corresponding position of the output matrix. 

[16] 

   

 
Fig 8: An example of how Inputs are mapped to 

Outputs 

And this often forms one (of d2) matrix of the 

output layer. This entire process is repeated with 

all the d2 kernels which form the d2 channels in 

the output layer. 

 

For each layer of the artificial Neural Network, the 

subsequent calculation takes place 

 
Fig 9: CNN Calculation for each layer[9] 

 

where, 

• x — is the input vector with dimension [p_l, 

1] 

• W — Is the weight matrix with 

dimensions [p_l, n_l] where p_l is the number 

of neurons  in the previous layer and n_l is the 

number of neurons in the current layer. 
• b — Is the bias vector with dimension [p_l, 1] 

• f — Is the activation function, which is 

usually ReLU. 

 
This calculation is repeated for each layer. 

After passing through the fully connected layers, 

the final layer uses the softmax activation function 

(instead of ReLU) which is used to get probabilities 

of the input being in a particular class 

(classification). And so finally, we have the 

possibilities of the object within the image 

belonging to the various classes!! 

Now, let’s visualize how to calculate the size of the 

output tensor from the input tensor. 

  

 
Fig 10: Output Dimension Calculations from Input 

Dimensions 

where, 

• W1 — is the width/height of the input tensor 

• F — is the width/height of the kernel 

• P — is the padding 
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• S — is the stride 

• W2 — is the output width/height 
 

 

Pooling Layer 

It is common to periodically insert a Pooling layer 

in-between successive Convolutional layers in a 

ConvNet architecture. Its function is to 

progressively reduce the spatial size of the 

representation to reduce the number of parameters 

and computation within the network, and hence to 

also control overfitting. The Pooling Layer operates 

independently on every depth slice of the input 

and resizes it spatially, using the MAX operation. 

The most common form could be a pooling layer 

with filters of size 2x2 applied with a stride of two 

downsamples every depth slice within the input by 

2 along both width and height, discarding 75% of 

the activations. Every MAX operation would, 

during this case, be taking a max over 4 numbers 

(little 2x2 region in some depth slice). The depth 

dimension remains unchanged. More generally, 

the pooling layer:  

• Accepts a volume of size W1×H1×D1W1×H1×D1 

• Requires two hyperparameters: 

o their spatial extent F, 

o the stride S, 

• Produces a volume of size 

W2×H2×D2W2×H2×D2 where: 

o W2=(W1−F)/S+1W2=(W1−F)/S+1 

o H2=(H1−F)/S+1H2=(H1−F)/S+1 

o D2=D1D2=D1 

• Introduces zero parameters since it computes a set 

function of the input 

• For Pooling layers, it's not common to pad the 

input using zero-padding. 

 

General pooling. In addition to max pooling, the 

pooling units also can perform other functions, like 

average pooling or maybe L2-norm pooling. 

Average pooling was often used historically but has 

recently fallen out of favor compared to the max 

pooling operation, which has been shown to figure 

better in practice. Pooling layer downsamples the 

quantity spatially, independently in each depth 

slice of the input volume.[10] 

 
Fig 11: General Pooling 

In this example, the input volume of size 

[224x224x64] is pooled with filter size 2, stride 2 

into output volume of size [112x112x64]. Notice 

that the volume depth is preserved.[10] 

 

 
Fig 12: Max Pooling 

The most common downsampling operation is max, 

giving rise to max pooling, here shown with a stride of 

two. That is, each max is taken over 4 numbers (little 

2x2 square).[10] 

 

Backpropagation. Recall from the backpropagation 

chapter that the backward pass for a max(x, y) 

operation features a simple interpretation as only 

routing the gradient to the input that had the highest 

value in the forward pass. Hence, during the aerial of 

a pooling layer, it's common to stay track of the index 

of the max activation (sometimes also called the 

switches) in order that gradient routing is efficient 

during backpropagation. 

 

 Getting rid of pooling. Many people dislike the 

pooling operation and think that we will escape 

without it. For example, striving for Simplicity: The 

All Convolutional Net proposes to discard the pooling 

layer in favor of architecture that only consists of 

repeated Convolutional layers. To reduce the 

dimensions of the representation they suggest using 

larger stride within the Convolutional layer once 

during a while. Discarding pooling layers has also 

been found to be important in training good 

generative models, like variation autoencoders (VAEs) 

or generative adversarial networks (GANs). It seems 
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likely that future architectures will feature only a few 

to no pooling layers.[12] 

 

Fully-connected layer 

Neurons during a fully connected layer have full 

connections to all or any activations within the 

previous layer, as seen in regular Neural Networks. 

Their activations can hence be computed with a 

matrix operation followed by a bias offset.  

 

Fully Connected Layer is simply, feed-forward neural 

networks. Fully Connected Layers form a previous 

couple of layers within the network. The input to the 

fully connected layer is that the output from the 

ultimate Pooling or Convolutional Layer, which is 

flattened then fed into the fully connected 

layer.

 
Fig 13: Fully-connected layer 

 

The output from the ultimate (and any) Pooling and 

Convolutional Layer could be a 3-dimensional matrix, 

to flatten that's to unroll all its values into a vector. 

 

This Flattened vector is then connected to a few fully 

connected layers which are the same as Artificial 

Neural Networks and perform the same mathematical 

operations! 

 
Fig 14. Flattening 

 

A Convolutional Neural Network (ConvNet/CNN) 

may be a Deep Learning algorithm that may absorb 

an input image, assign importance (learnable 

weights and biases) to varied aspects/objects within 

the image and be able to differentiate one from the 

other. The pre-processing required during a 

ConvNet is far lower as compared to other 

classification algorithms. While in primitive 

methods filters are hand-engineered, with enough 

training, ConvNets have the power to find out 

these filters/characteristics.  

  

The architecture of a ConvNet is analogous there 

to of the connectivity pattern of Neurons within 

the Human Brain and was inspired by the 

organization of the visual area. Individual neurons 

answer stimuli only during a restricted region of 

the visual field called the Receptive Field. A 

collection of such fields overlap to cover the entire 

visual area. 

 

 
Fig 15: Architecture of a ConvNet 

 

B. Recurrent Neural Network (RNN) 

 

Recurrent Neural Network(RNN) is a type of Neural 

Network where the output from the previous step is 

fed as input to the present step. In traditional neural 
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networks, all the inputs and outputs are independent 

of every other, but in cases like when it's required to 

predict subsequent word of a sentence, the previous 

words are required and hence there's a requirement to 

recollect the previous words. Thus RNN came into 

existence, which solved this issue with the assistance 

of a Hidden Layer. The main and most vital feature of 

RNN is the Hidden state, which remembers some 

information a few sequences. 

 

 
Fig 16: Common Flow of RNN 

 

RNN has a “memory” which remembers all 

information about what has been calculated. It uses 

equivalent parameters for every input because it 

performs an equivalent task on all the inputs or 

hidden layers to supply the output. This reduces 

the complexity of parameters, unlike other neural 

networks.[18] 

Suppose there's a deeper network with one input 

layer, three hidden layers, and one output layer. 

Then like other neural networks, each hidden 

layer will have its own set of weights and biases, 

let’s say, for hidden layer 1 the weights and biases 

are (w1, a1), (w2, a2) for second hidden layer and 

(w3, a3) for the third hidden layer. This means that 

every one of those layers is independent of every 

other, i.e. they do not memorize the previous 

outputs. 

 
Fig 17:Deep Flow of RNN 

 

Now the RNN will do the following: 

RNN converts the independent activations into 

dependent activations by providing equivalent 

weights and biases to all the layers, thus reducing 

the complexity of accelerating parameters and 

memorizing each previous outputs by giving each 

output as input to the subsequent hidden layer. 

Hence these three layers are often joined together 

such as the weights and bias of all the hidden 

layers is that the same, into one recurrent 

layer.[14] 

  

 
Fig 18: A chunk of Recurrent Neural Network 

 

A recurrent neural network is often thought of as 

multiple copies of an equivalent network, each 

passing a message to a successor. Consider what 

happens if we unroll the loop: 

 

 
Fig 19: An Unrolled recurrent neural network 

 

This chainlike nature reveals that recurrent neural 

networks are intimately associated with sequences 

and lists. They’re the natural architecture of the 

neural network to use for such data. The sequential 

information is preserved within the recurrent 

network’s hidden state, which manages to span 

many time steps because it cascades forward to 

affect the processing of every new example 

 

Formula for calculating current state: 

 

 
Fig 20: Calculations for current state 

where: 

• ht —  current state 

• ht-1 — previous state 

• xt — input state 
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Formula for applying Activation function(tanh): 

 

 
Fig 21: Calculations for Activation function(tanh) 

 

 

where: 

• whh — weight at recurrent neuron 

• wxh — weight at input neuron 

 

Formula for calculating output: 

 

 
Fig 22 : Calculations for output 

where: 

• Yt —  output 

• Why — weight at output layer 

 

C. LSTM Networks 

 

Long Short Term Memory networks – usually just 

called “LSTMs” – are a special quite RNN, capable 

of learning long-term dependencies. They were 

introduced by Hochreiter & Schmidhuber (1997) 

and were refined and popularized by many of us in 

the following work.1 They work tremendously 

well on an outsized sort of problem and are now 

widely used. 

LSTMs are explicitly designed to avoid the long-

term dependency problem. Remembering 

information for long periods of your time is 

practically their default behavior, not something 

they struggle to learn!  

 

 
Fig23 : The repeating module in a standard RNN 

contains a single layer. 

 

All recurrent neural networks have the shape of a 

sequence of repeating modules of the neural 

networks. In standard RNNs, this repeating module 

will have a really simple structure, like one tanh 

layer.LSTMs even have this chain-like structure, 

but the repeating module features a different 

structure. Instead of having one neural network 

layer, there are four, interacting in a very special 

way.[17] 

  

 Don’t worry about the main points of what’s 

happening. We’ll rehearse the LSTM diagram step 

by step later. For now, let’s just attempt to get 

comfortable with the notation we’ll be using.  

  
Fig24:The repeating module in an LSTM contains 

four interacting layers 

 

In the above diagram, each line carries a whole 

vector, from the output of 1 node to the inputs of 

others. The pink circles represent pointwise 

operations, like vector addition, while the yellow 

boxes are learned neural network layers.Lines 

merging denote concatenation, while a line forking 

denotes its content being copied and therefore the 

copies getting to different locations.[15][19] 

 

V. CONCLUSION AND FUTURE SCOPE 

 

Hand gestures are a powerful way for human 

communication, with lots of potential applications in 

the area of human computer interaction. Visionbased 

hand gesture recognition techniques have many 

proven advantages compared with traditional devices. 

However, hand gesture recognition is a difficult 

problem and the current work is only a small 

contribution towards achieving the results needed in 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) 

  

 

 
57 

the field of sign language gesture recognition. This 

report presented a visionbased  

system able to interpret isolated hand gestures from 

the Indian Sign Language(ISA). 

 

Videos are difficult to classify because they contain 

both the temporal as well as the spatial features. In 

this Paper, We have used two different models to 

classify on the spatial and temporal features. CNN was 

used to classify on the spatial features whereas RNN 

was used to classify on the temporal features. This 

shows that CNN along with RNN can be successfully 

used to learn spatial and temporal features and classify 

Sign Language Gestures. 

 

We wish to extend our work further in recognizing 

continuous sign language gestures with better 

accuracy. This method for individual gestures can also 

be extended for sentence level sign language. Also the 

current process uses two different models, training 

inception (CNN) followed by training RNN.  
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