
IJSRST205611 | Published : 16 Feb 2020 | Jan-feb-2020 [(5) 5 : 48-58]

3rd National Conference on Green Technology and Science for Sustainable Development

© 2020 IJSRST | Volume 5 | Issue 6 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X

International Journal of Scientific Research in Science and Technology

48

Sign Language Recognition using Convolutional Neural Network

Prof. Pradyumna P. Kulkarni1, Suraj S. Bhute2, Akash P. Wagh3
1,2,3Computer Science and Engineering, Anuradha Engineering College, Sant Gadgebaba Amravati, Chikhli,

India

Corresponding Author: kul.gokul@gmail.com

ABSTRACT

The inability to speak is considered to be a true disability. People with this disability use different modes to

communicate with others, the hand gesture is one of the methods used in sign language for non-verbal

communication. Developing sign language application for deaf people are often vital, as they’ll be ready to

communicate easily with even those that don’t understand language. This paper presents a unique sign language

recognition system that comprises of two-stage: Tracking and Representation. In the hand tracking phase, a

hand dataset is used to extract the hand tract to pre-train Convolutional Neural Network hand models. The

hand tracking is performed by the particle filter that associate with hand motion and CNN pre-trained hand

models into a joint circumstance observation model. The predicted hand position corresponds to the situation

of the particle with the best joint circumstance. Based on the predicted hand position is segmented and is the

input to the hand representation phase.

Keywords : Sign Language Recognition, Convolutional Neural Network, Recurrent Neural Network, ISL

I. INTRODUCTION

The motion of any body part like a face, a hand is a

form of gesture. Here for gesture recognition, we are

using image processing and computer vision. Gesture

recognition enables a computer to know human

actions and also acts as an interpreter between

computers and humans. This could provide the

potential for humans to interact naturally with the

computers without any physical contact of the

mechanical devices.[1]

Sign language is additionally serving a similar

meaning as speech communication does. This is used

by the deaf and dumb community all over the world

but in their regional form like ISL, ASL. Sign language

are often performed by using Hand gesture either by

one hand or two hands.[3] It is of two types Isolated

sign language and continuous sign language. Isolated

sign language consists of a single gesture having a

single word while continuous ISL or Continuous Sign

language is a sequence of gestures that generate a

meaningful sentence.

TABLE I : Major Components of SLR

Deaf people around the world communicate using sign

language as distinct from speech communication in

their everyday a visible language that uses a system of

manual, facial and body movements as the means of

Fingerspelling Word level sign

vocabulary

No manual features

Used to

spell words

letter by

letter .

Used for the

majority of

communicatio

n.

Facial

expressions and

tongue, mouth

and body

position.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

49

communication.[2] Sign language isn't a universal

language, and different sign languages are utilized in

different countries, just like the many spoken

languages everywhere the planet.

Fig 1: Finger Spelling Indian Sign Language [4]

II. RELATED WORK

A lot of research has been done in the field of sign

language recognition using various approaches. Many

methods are used for the conversion of Indian sign

language into text. Various methods are deployed,

each having its advantages and disadvantages. Many

such employed are for the conversion of ASL to text.

The same methods could be applied to interpret the

ISL as well.

• KarAradhana and Pinaki Sankar

Chatterje published the paper on “A Video-based

Approach for Translating Sign Language to Simple

Sentence in English” in 2013. In this paper, the

first method uses a video-based approach for

translating the sign to the equivalent sentence in

English. It consists of 3 modules. The first module

is the video processing module.[5]

• Ashish S. Nikam Aarti G. Ambekar published the

paper on “Sign Language Recognition Using

Image-Based Hand Gesture Recognition

Techniques” in 2016. In this paper, the second

method uses an Artificial Neural Network to

interpret the ISL. It consists of getting the image

and Preprocessing it to refine it, segmentation of

the hand area, extraction of features, and final

classification. [6]

• Paulraj M P, Sazali Yaacob, Mohd Shuhanaz Zanar

Azalan, and Rajkumar Palaniappan, published the

paper on “A Phoneme Based Sign Language

Recognition System using 2D Moment Invariant

Interleaving feature and Neural Network” on

2011. In this paper, a phoneme based method is

also used to recognize the sign language. There are

44 phonemes in the English language; therefore 44

gestures can be formed. [7]

• Rakesh.B. S, Tamilarasan.S, Avinash N published

the paper on “Hand Gesture Recognition based on

Real-time Indian Sign Language”. In this paper,

we are introducing Hand Gesture Recognition,

which will display messages based on input

gestures. All input images are captured by a web

camera. The proposed system doesn’t require to be

trained every time. [8]

III. METHODOLOGY

Fig 2 : Common Flow for training images using faster

 r-cnn

• First, we will extract the frames from the

multiple video sequences of each gesture.

• After the first step, noise from the frames i.e

background, body parts other than hand are

removed to extract more relevant features

from the frame.

• training on the spatial features. We have used

inception model for this purpose which is a

deep neural net.

• Store the train and test frame predictions.

We’ll use the model obtained in the above step

for the prediction of frames.

• The predictions of the train data are now

given to the RNN model for training on the

temporal features. We have used LSTM model

for this purpose.[9]

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

50

Fig 3 : System architecture for object classification

using faster r-cnn

In further subsections of this section, each step of the

methodology has been shown diagrammatically for a

better understanding of that step.

1. Frame Extraction and Background Removal

The input symbols involve various background data

which can be considered as noise or outliers. Then

with the assistance of the color intensity variation

and edge detection, gestures are recognized. The

Gestures are recognized with the edge detection.

Further, the image needs pre-processing for the

accurate gesture detection.

Fig 4 : Frame after extracting hands

The image with a detected edge is then moved for

edge filtering. An image filter for background

subtraction is implemented. The background image

is omitted with the removal of the components

outside the sting detected. The edge contains a

number of the input file which will not be

recognized for filtering. A threshold value is a

reference to the intensity of the info that's

processed. The portion of the image that matches the

intensity value is retained are filtered.[11]

2. Train CNN(Spatial Features) and Prediction

A Convolutional Neural Network (ConvNet/CNN)

may be a Deep Learning algorithm that may absorb

an input image, assign importance (learnable weights

and biases) to varied aspects/objects within the

image and be able to differentiate one from the

other.[12]

Fig 5: Frame Extraction and prediction using faster

CNN.

3. Train RNN (Temporal Features)

Recurrent Neural Network(RNN) is a kind of Neural

Network where the output from the previous step is

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

51

fed as input to the present step. In traditional neural

networks, all the inputs and outputs are independent

of every other, but in cases like when it's required to

predict subsequent word of a sentence, the previous

words are required and hence there's a requirement

to recollect the previous words. Thus RNN came

into existence, which solved this issue with the

assistance of a Hidden Layer.[14] [15]

Fig 6: Object deduction using faster RNN

IV. ALGORITHMS

A. Convolutional Neural Network (CNN)

A simple ConvNet is a sequence of layers, and each

layer of a ConvNet transforms one volume of

activations to a different through a differentiable

function. We use three main types of layers to

form ConvNet architectures: Convolutional Layer,

Pooling Layer, and Fully-Connected Layer (exactly

as seen in regular Neural Networks), We now

describe the individual layers and the details of

their hyperparameters and their connectivity.[9]

Convolutional Layer

The Convolutional Layer is that the core building

block of a Convolutional Network that does most

of the computational work. It gets as input a matrix

of the dimensions [h1 * w1 * d1], which is the blue

matrix in the fig[13]

Spatial arrangement.

Three hyperparameters control the dimensions of

the output volume: the depth, stride, and zero-

padding. We discuss these next:

a. First, the depth of the output volume could be

a hyperparameter: it corresponds to the

number of filters we might prefer to use, each

learning to appear for something different in

the input. For example, if the first

Convolutional Layer takes as input the raw

image, then different neurons along the depth

dimension may activate within the presence of

varied oriented edges, or blobs of color. We

will ask a group of neurons that are all

watching an equivalent region of the input as

a depth column (some people also prefer the

term fiber).

b. Second, we must specify the stride with which

we slide the filter. When the stride is 1 then

we move the filters one pixel at a time. When

the stride is 2 (or uncommonly 3 or more,

though this is often rare in practice) then the

filters jump 2 pixels at a time as we slide them

around. This will produce smaller output

volumes spatially.

c. As we will soon see, sometimes it will be

convenient to pad the input volume with

zeros around the border. The size of this zero-

padding is a hyperparameter. The nice feature

of zero paddings is that it'll allow us to

regulate the spatial size of the output volumes

(most commonly as we’ll see soon we'll use it

to precisely preserve the spatial size of the

input volume, therefore, the input and output

width and height are the same).

Fig 7: Convolutional Layer

A kernel may be a matrix with the size [h2 * w2 *

d1], which is one yellow cuboid of the multiple

cuboids (kernels) stacked on top of every other (in

the kernels layer) in the above image. For each

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

52

convolutional layer, there are multiple kernels

stacked on top of every other, this is often what

forms the yellow 3-dimensional matrix in Fig 2,

which is of dimensions [h2 * w2 * d2], where d2 is

that the number of kernels. For each kernel, we've

its respective bias, which may be a scalar quantity.

And then, we have an output for this layer, the

green matrix in Fig 2, which has dimensions [h3 *

w3 * d2].

Let’s throw light on some obvious things from

above.

1. The depth (d1) (or the number of channels) of

the input and one kernel is the same.

2. The depth (d2) of the output is equal to the

number of kernels (i.e. the depth of the orange

3-dimensional matrix).

All right, so we have inputs, kernels, and outputs.

Now let’s check out what happens with a 2D input

and a 2D kernel, i.e. d1=1. For each position of the

kernel on the image, each number on the kernel

gets multiplied with the corresponding number on

the input matrix (blue matrix) then all of them are

summed up for the worth within the

corresponding position within the output matrix

(green matrix). With d1 > 1, an equivalent thing

occurs for every one of the channels then they're

added up together then summed up with the bias

of the respective filter and this forms the value in

the corresponding position of the output matrix.

[16]

Fig 8: An example of how Inputs are mapped to

Outputs

And this often forms one (of d2) matrix of the

output layer. This entire process is repeated with

all the d2 kernels which form the d2 channels in

the output layer.

For each layer of the artificial Neural Network, the

subsequent calculation takes place

Fig 9: CNN Calculation for each layer[9]

where,

• x — is the input vector with dimension [p_l,

1]

• W — Is the weight matrix with

dimensions [p_l, n_l] where p_l is the number

of neurons in the previous layer and n_l is the

number of neurons in the current layer.
• b — Is the bias vector with dimension [p_l, 1]

• f — Is the activation function, which is

usually ReLU.

This calculation is repeated for each layer.

After passing through the fully connected layers,

the final layer uses the softmax activation function

(instead of ReLU) which is used to get probabilities

of the input being in a particular class

(classification). And so finally, we have the

possibilities of the object within the image

belonging to the various classes!!

Now, let’s visualize how to calculate the size of the

output tensor from the input tensor.

Fig 10: Output Dimension Calculations from Input

Dimensions

where,

• W1 — is the width/height of the input tensor

• F — is the width/height of the kernel

• P — is the padding

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

53

• S — is the stride

• W2 — is the output width/height

Pooling Layer

It is common to periodically insert a Pooling layer

in-between successive Convolutional layers in a

ConvNet architecture. Its function is to

progressively reduce the spatial size of the

representation to reduce the number of parameters

and computation within the network, and hence to

also control overfitting. The Pooling Layer operates

independently on every depth slice of the input

and resizes it spatially, using the MAX operation.

The most common form could be a pooling layer

with filters of size 2x2 applied with a stride of two

downsamples every depth slice within the input by

2 along both width and height, discarding 75% of

the activations. Every MAX operation would,

during this case, be taking a max over 4 numbers

(little 2x2 region in some depth slice). The depth

dimension remains unchanged. More generally,

the pooling layer:

• Accepts a volume of size W1×H1×D1W1×H1×D1

• Requires two hyperparameters:

o their spatial extent F,

o the stride S,

• Produces a volume of size

W2×H2×D2W2×H2×D2 where:

o W2=(W1−F)/S+1W2=(W1−F)/S+1

o H2=(H1−F)/S+1H2=(H1−F)/S+1

o D2=D1D2=D1

• Introduces zero parameters since it computes a set

function of the input

• For Pooling layers, it's not common to pad the

input using zero-padding.

General pooling. In addition to max pooling, the

pooling units also can perform other functions, like

average pooling or maybe L2-norm pooling.

Average pooling was often used historically but has

recently fallen out of favor compared to the max

pooling operation, which has been shown to figure

better in practice. Pooling layer downsamples the

quantity spatially, independently in each depth

slice of the input volume.[10]

Fig 11: General Pooling

In this example, the input volume of size

[224x224x64] is pooled with filter size 2, stride 2

into output volume of size [112x112x64]. Notice

that the volume depth is preserved.[10]

Fig 12: Max Pooling

The most common downsampling operation is max,

giving rise to max pooling, here shown with a stride of

two. That is, each max is taken over 4 numbers (little

2x2 square).[10]

Backpropagation. Recall from the backpropagation

chapter that the backward pass for a max(x, y)

operation features a simple interpretation as only

routing the gradient to the input that had the highest

value in the forward pass. Hence, during the aerial of

a pooling layer, it's common to stay track of the index

of the max activation (sometimes also called the

switches) in order that gradient routing is efficient

during backpropagation.

 Getting rid of pooling. Many people dislike the

pooling operation and think that we will escape

without it. For example, striving for Simplicity: The

All Convolutional Net proposes to discard the pooling

layer in favor of architecture that only consists of

repeated Convolutional layers. To reduce the

dimensions of the representation they suggest using

larger stride within the Convolutional layer once

during a while. Discarding pooling layers has also

been found to be important in training good

generative models, like variation autoencoders (VAEs)

or generative adversarial networks (GANs). It seems

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

54

likely that future architectures will feature only a few

to no pooling layers.[12]

Fully-connected layer

Neurons during a fully connected layer have full

connections to all or any activations within the

previous layer, as seen in regular Neural Networks.

Their activations can hence be computed with a

matrix operation followed by a bias offset.

Fully Connected Layer is simply, feed-forward neural

networks. Fully Connected Layers form a previous

couple of layers within the network. The input to the

fully connected layer is that the output from the

ultimate Pooling or Convolutional Layer, which is

flattened then fed into the fully connected

layer.

Fig 13: Fully-connected layer

The output from the ultimate (and any) Pooling and

Convolutional Layer could be a 3-dimensional matrix,

to flatten that's to unroll all its values into a vector.

This Flattened vector is then connected to a few fully

connected layers which are the same as Artificial

Neural Networks and perform the same mathematical

operations!

Fig 14. Flattening

A Convolutional Neural Network (ConvNet/CNN)

may be a Deep Learning algorithm that may absorb

an input image, assign importance (learnable

weights and biases) to varied aspects/objects within

the image and be able to differentiate one from the

other. The pre-processing required during a

ConvNet is far lower as compared to other

classification algorithms. While in primitive

methods filters are hand-engineered, with enough

training, ConvNets have the power to find out

these filters/characteristics.

The architecture of a ConvNet is analogous there

to of the connectivity pattern of Neurons within

the Human Brain and was inspired by the

organization of the visual area. Individual neurons

answer stimuli only during a restricted region of

the visual field called the Receptive Field. A

collection of such fields overlap to cover the entire

visual area.

Fig 15: Architecture of a ConvNet

B. Recurrent Neural Network (RNN)

Recurrent Neural Network(RNN) is a type of Neural

Network where the output from the previous step is

fed as input to the present step. In traditional neural

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

55

networks, all the inputs and outputs are independent

of every other, but in cases like when it's required to

predict subsequent word of a sentence, the previous

words are required and hence there's a requirement to

recollect the previous words. Thus RNN came into

existence, which solved this issue with the assistance

of a Hidden Layer. The main and most vital feature of

RNN is the Hidden state, which remembers some

information a few sequences.

Fig 16: Common Flow of RNN

RNN has a “memory” which remembers all

information about what has been calculated. It uses

equivalent parameters for every input because it

performs an equivalent task on all the inputs or

hidden layers to supply the output. This reduces

the complexity of parameters, unlike other neural

networks.[18]

Suppose there's a deeper network with one input

layer, three hidden layers, and one output layer.

Then like other neural networks, each hidden

layer will have its own set of weights and biases,

let’s say, for hidden layer 1 the weights and biases

are (w1, a1), (w2, a2) for second hidden layer and

(w3, a3) for the third hidden layer. This means that

every one of those layers is independent of every

other, i.e. they do not memorize the previous

outputs.

Fig 17:Deep Flow of RNN

Now the RNN will do the following:

RNN converts the independent activations into

dependent activations by providing equivalent

weights and biases to all the layers, thus reducing

the complexity of accelerating parameters and

memorizing each previous outputs by giving each

output as input to the subsequent hidden layer.

Hence these three layers are often joined together

such as the weights and bias of all the hidden

layers is that the same, into one recurrent

layer.[14]

Fig 18: A chunk of Recurrent Neural Network

A recurrent neural network is often thought of as

multiple copies of an equivalent network, each

passing a message to a successor. Consider what

happens if we unroll the loop:

Fig 19: An Unrolled recurrent neural network

This chainlike nature reveals that recurrent neural

networks are intimately associated with sequences

and lists. They’re the natural architecture of the

neural network to use for such data. The sequential

information is preserved within the recurrent

network’s hidden state, which manages to span

many time steps because it cascades forward to

affect the processing of every new example

Formula for calculating current state:

Fig 20: Calculations for current state

where:

• ht — current state

• ht-1 — previous state

• xt — input state

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

56

Formula for applying Activation function(tanh):

Fig 21: Calculations for Activation function(tanh)

where:

• whh — weight at recurrent neuron

• wxh — weight at input neuron

Formula for calculating output:

Fig 22 : Calculations for output

where:

• Yt — output

• Why — weight at output layer

C. LSTM Networks

Long Short Term Memory networks – usually just

called “LSTMs” – are a special quite RNN, capable

of learning long-term dependencies. They were

introduced by Hochreiter & Schmidhuber (1997)

and were refined and popularized by many of us in

the following work.1 They work tremendously

well on an outsized sort of problem and are now

widely used.

LSTMs are explicitly designed to avoid the long-

term dependency problem. Remembering

information for long periods of your time is

practically their default behavior, not something

they struggle to learn!

Fig23 : The repeating module in a standard RNN

contains a single layer.

All recurrent neural networks have the shape of a

sequence of repeating modules of the neural

networks. In standard RNNs, this repeating module

will have a really simple structure, like one tanh

layer.LSTMs even have this chain-like structure,

but the repeating module features a different

structure. Instead of having one neural network

layer, there are four, interacting in a very special

way.[17]

 Don’t worry about the main points of what’s

happening. We’ll rehearse the LSTM diagram step

by step later. For now, let’s just attempt to get

comfortable with the notation we’ll be using.

Fig24:The repeating module in an LSTM contains

four interacting layers

In the above diagram, each line carries a whole

vector, from the output of 1 node to the inputs of

others. The pink circles represent pointwise

operations, like vector addition, while the yellow

boxes are learned neural network layers.Lines

merging denote concatenation, while a line forking

denotes its content being copied and therefore the

copies getting to different locations.[15][19]

V. CONCLUSION AND FUTURE SCOPE

Hand gestures are a powerful way for human

communication, with lots of potential applications in

the area of human computer interaction. Visionbased

hand gesture recognition techniques have many

proven advantages compared with traditional devices.

However, hand gesture recognition is a difficult

problem and the current work is only a small

contribution towards achieving the results needed in

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

57

the field of sign language gesture recognition. This

report presented a visionbased

system able to interpret isolated hand gestures from

the Indian Sign Language(ISA).

Videos are difficult to classify because they contain

both the temporal as well as the spatial features. In

this Paper, We have used two different models to

classify on the spatial and temporal features. CNN was

used to classify on the spatial features whereas RNN

was used to classify on the temporal features. This

shows that CNN along with RNN can be successfully

used to learn spatial and temporal features and classify

Sign Language Gestures.

We wish to extend our work further in recognizing

continuous sign language gestures with better

accuracy. This method for individual gestures can also

be extended for sentence level sign language. Also the

current process uses two different models, training

inception (CNN) followed by training RNN.

VI. REFERENCES

[1]. S. Suharjito, R. Anderson, F. Wiryana, M. C.

Ariesta, G.P. Kusuma, "Sign Language

Recognition Application Systems for Deaf-Mute

People: A Review Based on Input-Process-

Output", Procedia Computer Science, vol. 116,

pp. 441-448, Oct. 2017.

[2]. Aditi Kalsh, N.S Garewal, Sign Language

Recognition System, International Journal of

Computational Engineering Research, pp. 15-21,

vol. 3.”.

[3]. J Singha, K DasIndian “Sign Language

Recognition Using Eigen Value Weighted

Euclidean Distance Based Classification

Technique.” arXiv preprint arXiv:1303.0634, 4

(2) (2013), pp. 188-195

[4]. Copyright © William Vicars, Sign Language

resources at

LifePrint.com,http://lifeprint.com/asl101/topics/

wallpaper1.htm Accessed Jan 26, 2020]

[5]. Kar, Aradhana and Pinaki Sankar Chatterjee. “A

Video-based Approach for Translating Sign

Language to Simple Sentence in English.”

(2010).

[6]. A. S. Nikam and A. G. Ambekar, "Sign language

recognition using image based hand gesture

recognition techniques," 2016 Online

International Conference on Green Engineering

and Technologies (IC-GET),

Coimbatore,2016,pp.1-5.doi:

10.1109/GET.2016.7916786

[7]. M P, Paulraj & Yaacob, Sazali & Zanar Azalan,

Mohd Shuhanaz & Palaniappan, Rajkumar.

(2010). A phoneme based sign language

recognition system using skin color

segmentation. 1 - 5.

10.1109/CSPA.2010.5545253.

[8]. Rakesh.B.S, Tamilarasan.S, Avinash N, “Hand

Gesture Recognition based on Real-time Indian

Sign Language,” International Journal of

Computer Sciences and Engineering, Vol.7,

Issue.7, pp.181-185, 2019.

[9]. Sanil Jain and K.V.Sameer Raja,“Indian Sign

Language Character

Recognition”,.Available:https://cse.iitk.ac.

in/users/cs365/2015/_submissions/vinsam/report

.pdf Accessed Jan 16, 2020].

[10]. Andrej Karpathy,”CS231n: Convolutional

Neural

NetworksforVisualRecognition.”,Available:

http://cs231n.github.io/convolutionalnetworks/

Accessed Jan 31, 2020]

[11]. D. Anbarasan | R. Aravind | K. Alice "GRS –

Gesture based Recognition System for Indian

Sign Language Recognition System for Deaf and

Dumb People" Published in International

Journal of Trend in Scientific Research and

Development (ijtsrd), ISSN: 2456-6470,Volume-

2Issue-2Februar2018,

[12]. Sumit saha,”A Comprehensive Guide to

Convolutional

NeuralNetworktheELI5way.”,Available:

https://towardsdatascience.com/a-

comprehensive-guide-to-convolutional -neural-

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

58

networks-the-eli5-way-3bd2b1164a53Accessed

Jan 31, 2020]

[13]. "Review of Different Deep Learning Approaches

for Image Classification", International Journal

of Emerging Technologies and Innovative

Research (www.jetir.org), ISSN:2349-5162,

Vol.6, Issue 3, page no.378-384, March-2019

[14]. Aishwarya,” Introduction to Recurrent Neural

Network”, Available:

https://www.geeksforgeeks.org/introduction-to-

recurrent-neural-network/Accessed Jan 31,

2020]

[15]. Long Đỗ,” Recurrent Neural Network And

Long-Short Term Memory”, Available:

https://ai.hblab.vn/2019/04/recurrent-neural-

network-and-long-short.htmlAccessed Jan 31,

2020]

[16]. Arunava,”ConvolutionalNeuralNetwork“,Availa

ble:https://towardsdatascience.com/convolution

al-neural-network-17fb77e76c05 Accessed Jan

31, 2020]

[17]. Mitchell, Ross; Young, Travas; Bachleda,

Bellamie; Karchmer, Michael (2006). "How

Many People Use ASL in the United States?:

Why Estimates Need Updating" (PDF). Sign

Language Studies (Gallaudet University Press.) 6

(3). ISSN 0302-1475. Retrieved November 27,

2012.

[18]. Y. Jia. Caffe: An open source convolutional

architecture for fast feature embedding.

http://caffe.berkeleyvision.org/,

2014.Lifeprint.com. American Sign Language

(ASL) Manual Alphabet (fingerspelling) 2007

[19]. J. Atwood, M. Eicholtz, and J. Farrell. American

Sign Language Recognition System. Artificial

Intelligence and Machine Learning for

Engineering Design. Dept. of Mechanical

Engineering, Carnegie Mellon University, 2012

Authors Profile

Prof. Pradyumna P. Kulkarni pursued Bachelor of

Engineering from SGBAU Amravati University of

Maharatsra, in 2009 and Babasaheb Ambedkar

Marathwada University Aurangabad 2012. He is

currently working as Assistant Professor in

Department of Computer Science & Engineering,

at Anuradha Engineering College Chikhli Since Dec 2012 M.S.

India

Mr Suraj S Bhute pursuing Bachelor of

Engineering in Computer Science & Engineering

Department from Anuradha Engineering College

of SGBAU Amravati University Maharashtra

Mr Akash P Wagh pursuing Bachelor of

Engineering in Computer Science & Engineering

Department from Anuradha Engineering College of

SGBAU Amravati University Maharashtra

