
IJSRST205639 | Published : 16 Feb 2020 | Jan-feb-2020 [(5) 5 : 197-201]

3rd National Conference on Green Technology and Science for Sustainable Development

© 2020 IJSRST | Volume 5 | Issue 6 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X

International Journal of Scientific Research in Science and Technology

197

Implementing Load Balancing in Parallel Computing through

Program Slicing
Dr. P. A. Tijare

Department of Computer Science and Engineering, Sipna College of Engineering & Technology, Amravati,

Maharashtra, India

ABSTRACT

We need to achieve more efficiency in execution time in case of problem solving using the scheduling

techniques. Parallel computing shows considerable potential to deliver cost effective solution to application

with high requirements in performance. The proposed work potentially reduces the time and effort needed to

develop large variety of parallel application. Load balancing in parallel computing is achieved through slicing

the iterative program and running the slice on the other nodes to improve the performance of the system.

Keywords : Load Balancing, Slicing, Parallel Computing

I. INTRODUCTION

Parallel Computing is a form of computation where

computer problems are divided into smaller jobs and

then execute in parallel. There are different forms of

parallel computing: Bit-Level Parallelism, Instruction

Level Parallelism, Data Parallelism and Task

Parallelism. Parallelism has been employed for many

years, mainly in High- Performance Computing, but

due to physical constraints the frequency scaling is

not achieved till date.

The recent progress in the parallel computing has

provided many facilities in transmission and

manipulation of data through network. However,

these facilities and advancement have also brought the

challenges in the field of parallel computing. High

Complexity of building parallel application is often

cited as one of the major impediments to the

mainstream adoption of Parallel Computing. Many

Scientific Computations require a large amount of

computing time, the computing time can be reduced

by dividing a problem over several processors.

II. RELATED WORK

Message Passing Interface is the most important

parallel programming tool in cluster computing

currently [1]. Message passing achieves the

communication of parallel program by adopting

message passing mechanism. MPI has many merits

such as good portability, strong performance, and high

efficiency and so on, and it has all kinds of free,

practical versions, for example MPICH, LAM, IBM

MPL, all of parallel computer companies support MPI,

Achieving load balance become very interesting in

parallel program, it can improve the performance of

MPI program.

Message Passing Interface is a typical interface of

message passing mechanism. It can exploit parallel

program based on message passing. Message Passing

Interface adopts program model of signal process signal

data, in other words, each process carries out the same

message passing interface program.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

198

In the Research Paper “Dynamic Load Balancing

Algorithm for MPI Parallel Computing” by Sun Nian,

Liang Guangmin they proposed an implementing

method in Message Passing Interface parallel program

that can transfer tasks between nodes effectively by

finding node’s load.

The Problem of Dynamic Load Balancing need to be

solved in order to make cluster system high

performance. Load balancing problems of nodes are

main barrier, being one of hotpots of scientific

research domain. Load balance includes static load

balance and dynamic load balance, static load balance

is not relate to state of system and it has low efficiency;

Dynamic load balancing algorithm can balance the

loads of nodes, having good practicability [2].

“A Generic Parallel Computing Model for Distributed

the Environment” by Chi-Chang Meng-Xiang Chen,

proposed a generic parallel computing model for

distributed computing platforms. They have provided a

generic model for the users who intent to write

parallel programs over the distributed system with

CORBA middle ware [5]. They used the concept of

factory object in the model to create slave object

dynamically to fulfill the master/slave parallel

computing paradigm [4].

Cluster computing technology is increasingly

becoming the technology of choice for the parallel

computing in recent years. This is mainly due to the

low cost and easy expansion of cluster workstations in

comparison to the main frame parallel computer

systems. CORBA (Common Object Request Broker

Architecture) is one of the most popular middle wares

for the heterogeneous distributed system supported by

OMG [3].

The author of the research paper “Design Patterns for

Parallel Computing Using a Network of Processors”,

Stephen Siu and Ajit Singh provides a DPnDP model

and system that aims to provide pattern in the form of

parameterized and application independent library of

code skeleton[6].

The Design Pattern and Distributed Processes uses

Multiple Instruction Multiple Data (MIMD) Processor

Architecture and Operating system which creates

process and pass message for communication. In their

model, Parallel Program is represented by a directed

graph. Each node in the graph has a set of input and

output ports that are used for receiving and sending

messages respectively. Output port of a node is

connected to an input port of another node.

When a node sends a message to one of its output

ports it reaches the input ports of the connected node

which can receive this message. They have found the

abstraction of nodes and ports quite valuable in

designing and using our design-pattern based system.

It has allowed the model to remain independent of the

specifics of the underlying message passing models

such as Sockets [8], PVM [7] or MPI [9].

III. PROGRAM SLICING

A computer program is an accumulation of directions

given to Computer for performing particular task. A

computer obliges projects to work, and other

programming ideal models to execute the program's

instructions in a central processing unit.

A. Program Flow

Each computer program has a begin and end point and

exceptional standards how the processor will execute

every instruction. It fluctuates from Program to

Program. Generally, a program will begin at some

"main" function and proceed "downward" or

"upwards" one line at any given moment until the

finish of the capacity is come to. In the event that the

conditional statement occurs in the program the

program control will stream to the following

explanation for execution relying on the condition.

In the event that a loop is occurred in a program, a

block of statements can be executed at least zero or

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

199

more time depending upon the condition. On the off

chance that the "Control Statement" is absent in the

program, the program will dependably spill out of line

to line.

B. Data Flow

Data flows through a program in proper sequence.

The variable in the statement is changed in each

operation and put the new value in new variable.

Each line in the program executed autonomously or

consecutively. Every announcement takes already

computed data, changes it and put away in another

variable.

Information or data is made, put away in a specific

variable, and afterward used to figure new

information, which is similarly put away in new

variable and replaces the old values from old variables.

C. Program Representation

To have intermediate representation of a program is

the best way to understand large programs. To

compute a slice, it is first required to change the given

program source code into a particular intermediate

representation. A general feature for most of the

slicing algorithms is that programs are represented by

a directed graph.

There are many graphical representations such as:

1. Control Flow Graph

2. Data Dependence Graph

3. Control Dependence Graph

4. Program Dependence Graph

5. System Dependence Graph

6. Extended System Dependence Graph, etc.

D. Control Flow Graph (CFG)

A control Flow Graph represents all paths, using

graph notations that might be traversed through a

program during its execution. In a control flow graph

each node in the graph represents a basic block.

Directed edges are used to represent jumps in the

control flow [10,11].

A CFG contains a node for each statement and control

predicate in the program; an edge from node i to node

j indicates the possible flow of control from the

former to the latter. CFGs contain special nodes

labeled START and STOP corresponding to the

beginning and the end of the program, respectively.

E. Slicing

Program slicing is a method of creating slices of the

program according to slicing criteria. Different

approaches on Program Slicing of different researches

are there for different types of program. Our main

focus was basically making the real use of slicing

algorithm in the computing world. The real use of

slicing is only when the slices are independent in all

respect i.e. running independently by taking the

necessary input, reliability with respect to necessary

output. Traditional program slicing is done specifically

with slicing criteria. The Slicing algorithm developed

in research work use slicing point as backbone of the

algorithm. A proposed Slicing Algorithm is designed

only for Iterative Program.

The Slicing Point in the program is the Point where

the logic of the program repeats the number of the

time till the logic of the program is complete. In this

research work we refer the slicing point as “For Loop”.

The Iterative Program contains repetition of the same

logic number of times, and for the completion of the

repetition, the system waits till the test condition is

completed. The Slicing Point is the point from where

we can slice the program into number of required

slice.

F. Slicing Algorithm Steps

The Slicing Algorithm is described in the following

Steps:

1. Formed CFG of the Program.

2. Identify Slicing point of the Program.

3. Find initial and last value of the Iteration in

slicing Point.

4. From Last Value of the iteration divide the Slicing

Point in number of iteration.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

200

5. In newly formed slice, add the program starting

statement and the statement after the slicing point

to the slice, so that the slice can be ready for

execution.

CFG of a program before slicing

 True

False

Figure 1 : CFG of a program before slicing

CFG of a program after slicing

Figure 2 : CFG of a program after slicing

Figure 1 shows the Control Flow Graph of a program

and figure 2 shows the Control Flow Graph of the

program after applying the Slicing Algorithm to the

program.

IV. Results

Here we considered three numbers of systems present

in the network. The task is sliced and sent to number

of nodes for partial execution. Initially task is

completed on local system.

Figure 3 : Processing on local machine

Figure 4 : Calculating on two parallel machines

Figure 5 : Calculating on three parallel machines.

Start

Program Code

for loop condition

Program Code

1

Program Code

3

End

for 1 for 2 for 3

Program Code

2

Return 1 Return 3

Return 2

Start

Program Code

for loop condition

Program Code Program Code

End

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

201

V. CONCLUSION

Implementing execution of a task in parallel that can

run for number of iterations between nodes

effectively by consideration of node’s load is carried

out. Reduction in completion time of a task is proved

by the execution of the algorithm in parallel

computing. Thus we have achieved Load balancing in

parallel computing through slicing the iterative

program and running the slice on other nodes to

improve the performance of the system.

VI. REFERENCES

[1]. Zhu Yongzhi, Zhao Yan, Wei Ronghui,

“Constructing and Performance Analysis of a

Beowulf Parallel Computing System Based on

MPICH”, Computer Engineering and

Application 2006.14:132.

[2]. Sun Nian, Liang Guangmin “Dynamic Load

Balancing Algorithm for MPI Parallel

Computing”, 2009 International Conference on

New Trends in Information and Service Science.

[3]. Zambonelli.F, “Exploiting Biased Load

Information in Direct neighbour Load Balancing

Policies J]”, Parallel Computing, 1999, 25(6):

745-766.

[4]. Chi-Chang Chen Meng-Xiang Chen, “A Generic

Parallel Computing Model for the Distributed

Environment”, 2006, IEEE Seventh

International Conference on Parallel and

Distributed Computing, Applications and

Technologies.

[5]. Gerald Brose, Andreas Vogel, and Keith Duddy,”

Java Programming with CORBA”. Third

Edition, John Wiley & Sons, 2001.

[6]. Stephen Siu and Ajit Singh, “Design Patterns for

Parallel Computing Using a Network of

Processors”, 1997, Sixth IEEE International

Symposium on High Performance Distributed

Computing.

[7]. G. Geist and V. Sunderam. Network-based

concurrent computing on the PVM system.

Concurrency: Practice and Experience,

4(4):29:3-311, 1992.

[8]. S. Leffler, M. McKusick, M. Karels, and J.

Quarterman. The design and implementation of

4.3 BSD UNIX Operating System. Addison-

Wesley Publishing Company, Inc., 1990.

[9]. D. Walker. The design of a standard message

passing interface for distributed memory

concurrent computers. Parallel Computing,

20(4):657-673, 1994.

[10]. F. Tip. 1995. A survey of program slicing

techniques. Journal of Programming Languages

3(3):121–89.

[11]. J. Ferrante, K. Ottenstein, and J. Warren. 1987.

The program dependence graph and its use in

optimization. ACM Transactions on

Programming Languages and Systems 9(3):319–

49.

