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ABSTRACT 
 

This paper proposes a price-based demand response program by the nonlinear control method. The demand response 

program is formulated as a nonlinear power management system with price feedback. We give the conditions of the 

price parameters for both the global asymptotic stability of the system and the social welfare optimality of the 

equilibrium point. Furthermore, the system is shown to be input-to-state (ISS) stable when there are additive 

disturbances on the power measurements and the price, and the discrete-time implementation of the power 

management system is given. Simulation results demonstrate the balance between supply and demand and the 

stability of the system with and without disturbances. 
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I. INTRODUCTION 

 

With the increasing population and the improving living 

standards, electrical energy use keeps rapidly increasing 

in the last several decades. The rapid increase of 

electricity demand has imposed great stress on 

electricity grid especially for maintaining grid power 

balance. The power supply and demand of a grid must 

always balance and such real time balance is a critical 

system requirement. Any power imbalance or mismatch 

will cause severe consequences in the reliability and 

quality of power supply (e.g. power outages, voltage 

fluctuations). In order to maintain the real time power 

balance, great efforts have been made from power 

demand side (e.g. demand response control). 

 

In general, there are two categories of demand response 

programs: incentive-based programs and price-based 

programs. The incentive-based programs include the 

direct load control program, the emergency demand 

response program, and the ancillary services market. For 

the price-based programs, the utilities can hanged the 

power consumption of customers by pricing, such as 

time of use (TOU), critical peak pricing (CPP), extreme 

day CPP (ED-CPP), extreme day pricing (EDP),and 

real-time pricing (RTP) [1]. Smart grid increases the 

opportunities for demand response by providing real-

time data to providers and customers. In smart grid, the 

price can be provided to the customers in real time. For 

example, the electricity provider announces electricity 

prices on a rolling basis in the RTP program, and the 

price for a given time period (e.g., an hour) is 

determined and published before the start of the period 

(e.g., 15 min beforehand). 

 

II. METHODS AND MATERIAL 
 

A. Related Work 

 

There exist a number of literatures on the price-based 

demand response programs. Different demand response 

programs were developed based on game theory [2–4], 

stochastic optimization [5,6], intelligent optimization 

[7], and dual decomposition method [8,9]. The social 

welfare maximization was achieved by optimizing the 

individual utilities of the customers in the demand 

response program based on dual decomposition. Then, a 

distributed power control algorithm was proposed for 

demand response with communication loss [10]. The 

works mentioned above assumed that the price is 

adjusted according to a pricing algorithm instead of an 

explicit pricing function. Recently, a linear pricing 

function was developed to achieve the balance between 

supply and demand for smart grid [11, 12], and a 
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nonlinear pricing function was used to design a 

distributed demand response algorithm [13]. 

Nevertheless, few works are devoted to the social 

optimality of the distributed power control under 

nonlinear pricing function and the influence of the 

disturbances on the power control algorithm. 

 

In this study, we use a quadratic pricing function and 

establish the conditions on the social optimality of the 

distributed power control algorithm. Due to the 

unavoidable disturbances on power systems, we further 

consider the distributed power control with additive 

disturbances on the power measurements and the price. 

In [14], user preferences are taken into account with the 

concept of discomfort level and an optimization problem 

is formulated to balance the load and minimize the user 

inconvenience caused by demand scheduling. Several 

ideas from the distributed computing area such as 

makespan have been introduced to energy consumption 

optimization. Similarly, in [15], an energy consumption 

scheduling problem is established to minimize the 

overall energy cost. Techniques similar to those used in 

wireless network resource allocation have been applied 

here to solve the underlying optimization problem. In 

both works, the user demands are known beforehand and 

the optimization problem is solved in numerical 

iterations. 

 

While the idea in [16], the load control in a multiple-

residence setup. The utility company adopts a cost 

function representing the cost of providing energy to 

end-users. Each residential end-user has a base load, two 

types of adjustable loads, and possibly a storage device. 

The first load type must consume a specified amount of 

energy over the scheduling horizon, but the consumption 

can be adjusted across different slots. The second type 

does not entail a total energy requirement, but operation 

away from a user-specified level results in user 

dissatisfaction. The research issue amounts to 

minimizing the electricity provider cost plus the total 

user dissatisfaction, subject to the individual constraints 

of the loads. The problem can be solved by a distributed 

sub gradient method. The utility company and the end-

users exchange information through the Advanced 

Metering Infrastructure (AMI)-a two-way 

communication network-in order to converge to the 

optimal amount of electricity production and the optimal 

power consumption schedule. The algorithm finds near-

optimal schedules even when AMI messages are lost, 

which can happen in the presence of malfunctions or 

noise in the communications network. The algorithm 

amounts to a sub gradient iteration with outdated 

Lagrange multipliers, for which convergence results of 

wide scope are established. 

 

Our works the price-based demand response program is 

formulated as a nonlinear power management system. 

The condition is established for the equivalence of the 

equilibrium point of the system and the optimal solution 

of a social welfare maximization problem. The proof of 

the stability is given for the power management system 

with and without disturbances on the power 

measurements and the price. 

 

B. System Design 

 

As shown in Fig (1), we consider a smart power system 

consisting of one electricity provider and N customers. 

The operation cycle of the power system is divided into 

several time slots. In each time slot, the electricity 

provider decides the electricity price and announces it to 

the customers. Then, the customers manage their power 

consumption according to the announced price. We 

employ the utility functions to characterize the profits of 

the customers [17]. 

 

A quadratic utility function with linear decreasing 

marginal benefit is defined as: 

 

 

  (  )  {
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Where: 

 

- Xi=is the power consumption of costumer (  ϵ 

{1‚2….N}). 

-    denoted the willingness to increase the power 

consumption.  

-      denoted the maximum demand of customer I for 

instance. 
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Figure 1. Smart Power System 

 
The utility functions with different willingness 

parameter are shown in table (1). 

 

Willingness 

parameters 

Power 

consumption 

Utility 

  =6, a=1 1 5 

2 10 

3 12.5 

4-12 15 

  =8, a=1 1 7.5 

2 12.5 

3 17.5 

4 22.5 

5 26.5 

6 28.5 

7-12 30 

  =10, a=1 1 10 

2 17.5 

3 25 

4 31.5 

5 37.5 

6 42.5 

7 45 

8 47.5 

9-12 50 

 

Table (1) utility value with different willingness 

parameters 

 

The quadratic utility function indicates that a customer is 

willing to choose larger power consumption with      

as the saturation value. In general, the objective of 

demand response is to maximize the social welfare [18], 

which can be formulated as the following optimization 

problem: 

 

(  )     ∑   (    )   

   ∑        
 

Where   denotes the power supply. The constraint in 

(P1) indicates that the total power consumption should 

match with the power supply. The optimization problem 

(P1) is a convex optimization problem and can be solved 

by the following primal algorithm [19]: 

 

  ̇    (      ( )   ( ))      (2) 

Where (   ) is the control gain, p(x) is the pricing 

function of the electricity provider, and    

(          )  denotes the set of power consumption 

of all the customers. 

C. Problem Function 

  

1-Stability function: 

 

Definition 1 (Stability [7] ). Let x = 0 be an equilibrium 

point for x° = f(x) with x(0)=  . The equilibrium point x 

=0 of x° = f(x) is said to be globally asymptotically 

stable if                  ( )       for all initial 

conditions  . 

 

Proof. Let  ( ) = x°, where φ(x =(  (  )x  ( ; . . . ;  )x(( 

and  ̇  ⟨  |   |  ⟩ define a Lyapunov candidate 

function as : 

 

 ( )   

 
   ( ) ( )  ( )    

 

Where   (  ( is strictly positive for all x, except for x = 

x◦. The time derivative of  ( ) is obtained as 

 ̇( )  ∑(

   

  ( )    ( ))
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  ( )  ∑
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Where J is the Jacobin matrix of Q(x( and can be 

defined as: 
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Where    ∑       

2- Pricing and power consumption calculation: 

In this study, we select the quadratic pricing function 

 

 
 

Where b and c are positive price parameters, b=0.01 in 

the case of disturbance conditions we select theses 

equations: 

   ̇    (      ( )   ( )    )     (6) 

 ( )   (∑      )   (∑      )         (7) 

While equations with the discrete –time control 

algorithm without Disturbances: 

  (   )    ( )   (      ( )   ( ))   (8)  

 (   )    (∑   ( ))   (∑   ( )      )   (9) 

Equations with the discrete –time control algorithm with 

disturbances: 

  (   )    ( )   (      ( )   ( )    )  

   (10) 

 (   )  

 (∑   ( )     )   (∑   ( )          )   (11) 

d1 and d2 denote the additive disturbances on the price 

and the total power consumption, respectively and µ is 

the step size =0.07 . 

D. Proposed Algorithm 

 

The first step: the electricity provider sets the initial 

electricity price according to the Forecast demand and 

then announces it to the customers. 

                   

The second step: the customers adjust their power 

consumption according to (10) defining a all positive 

scalar d, the  demand response program is turned to  step 

3 if │xi(m+1)-xi(m)│˃δ for any  i = 1; 2; . . . ;N. 

Otherwise, the demand  response program is terminated.

  

The third step: the electricity provider updates the 

electricity price according to (11) and then announces 

the updated price to the customers. Then, the demand 

response program is turned to step 2. 

 

 

Figure 2. Flow chart of the DR Program 

III. RESULTS AND DISCUSSION 
 

In the simulations, we consider a residential power 

system composed of ten customers and one electricity 

provider. Supply Q is varying from 10 kW to 42    

.The parameters (a) is set to 3.3.The willingness 

parameter    is randomly selected from [13, 20]. 
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Table (2) the electric price in for different time slots in a day 

   

Table (3) the total power consumption across different time slots in a day 

 

 here    de ote  the  ri e i  ( e t       ) ,    de ote  the  ri e with di t r a  e  i ( e t       ),TPC denotes 

total power consumption in (  )and PCWD denotes total power consumption with disturbances in (  ).From 

table(3) we observe that the disturbances cause errors to the electricity price, the total power consumption (TPC) 

matches exactly with the power supply across different time slots in a day when there are no disturbances. However, 

the TPC will deviate from the power supply when there exist some disturbances on the power measurements and the 

electricity price. The average deviations of the (TPC) and (DPC) in a day are defining as: 

   
 ∑     ∑                          

   

  
 (  ) 

   
∑    

    
    

   

  
 (  ) 

Where t denotes the time slot in a day,   
  is the power consumption of customer i in time slot t;   

  is the electricity 

price without disturbances, and   
 is the electricity price with disturbances;   =0.64 and    =0.21. 

Table (4) performance of power consumption control with and without disturbances 

PAR    ( e t       ) DPC(   )  

1.8 16.5 531.5 Disturbances 

1.7 16.5 529.5 No disturbances 

 

Where: DPC denotes the daily power consumption, DAP denotes the daily average price and PAR denotes the peak 

to average ratio is defined as [9]:                                                          

    
        (      ) ∑       ) 

∑ ∑      
       

 (  ) 

And the (DAP) is defined as: 

  
∑   (∑       )  

   

∑ ∑       
  
   

 (  ) 

Time 1am 2am 3am 4am 5am 6am 7am 8am 9am 10am 11am 12am 

P 14.5 14.25 13.75 13.5 13 13.75 14.5 15 15.25 15.75 16.25 16.75 

PWD 14.9 14.25 13.75 13.4 12.8 13.95 14.35 14.9 15.25 15.7 16.45 16.65 

Time 13bm 14bm 15bm 16am 17bm 18bm 19bm 20bm 21bm 22bm 23am 24bm 

P 17.25 16.75 16.25 15.75 16.75 17 17.25 18.25 18.5 18.25 17.5 15.75 

PWD 17.4 16.5 16.35 15.6 16.85 17.6 17.37 18.13 18.7 18.97 17.63 15.6 

Time 1am 2am 3am 4am 5am 6am 7am 8am 9am 10am 11am 12am 

TPC 15 14 13 12 11 13 15 17 18 20 22 25 

TPCWD 14.25 14 12.5 11.5 10.5 13 16.25 16 18 20.5 23 24.25 

Time 13bm 14bm 15bm 16am 17bm 18bm 19bm 20bm 21bm 22bm 23am 24bm 

TPC 28 25 22 20 25 26 28 36 39 36 30 20 

TPCWD 29 26.5 23.75 19.5 24.5 27 29 36 38.25 36 30 19 
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The social welfare(∑       (  )) obtained from the power management system is given in table below shown 

that the social welfare obtained from the power management system achieves the optimal value of (  ), and the 

disturbances will result in the deviations of  the social welfare from the optimal value.                                                  
       

Table (5) Social welfare obtained from the power management system 

 

Where(S.W)denotes the social welfare and (S.W.D) denotes the social welfare with disturbances. The convergence 

of the power control algorithms without and with disturbances is shown in table (6) and (7), respectively. The 

convergence of price in such two cases is shown in table (8) it is observed that both the power consumption and the 

price can converge within 30 iterations. Typically, the disturbances incur longer settling time and larger overshoot in 

the adjustment of the power Consumption and the price.  
  

Table (6) convergence of customer power consumption in (  ) without disturbances 
 

Customer 1 2 3 4 5 6 7 8 9 10 

Iteration 

1 1.19 1.25 1.3 1.37 1.42 1.49 1.55 1.6 1.67 1.72 

2 1,17 1.21 1.28 1.32 1.4 1.45 1.52 1.58 1.65 1.7 

3 1.2 1.26 1.31 1.375 1.43 1.5 1.57 1.61 1.68 1.73 

4 1.18 1.22 1.285 1.33 1.41 1.46 1.56 1.59 1.67 1.71 

5 1.185 1.23 1.29 1.335 1.415 1.47 1.565 1.595 1.675 1.715 

6 1.8 1.22 1.285 1.33 1.41 1.46 1.56 1.59 1.67 1.71 

7-30 1. 8 1.22 1.285 1.33 1.41 1.46 1.56 1.59 1.67 1.71 

 

Table (7) convergence of  customer power consumption in(  ) without disturbances 

 

Customer 1 2 3 4 5 6 7 8 9 10 

Iteration 

1 1.19 1.25 1.3 1.37 1.42 1.49 1.55 1.6 1.67 1.72 

2 1.1 1.18 1.23 1.4 1.48 1. 52 1.48 1.54 1.59 1.66 

3 1.21 1.29 1.27 1.45 1.49 1.45 1.53 1.65 1.71 1.78 

4 1.15 1.2 1.3 1.32 1.47 1.51 1.57 1.69 1.65 1.7 

5 1.2 1.25 1.28 1.36 1.45 1.47 1.55 1.62 1.69 1.75 

6 1.19 1.22 1.29 1.34 1.42 1.48 1.56 1.61 1.68 1.71 

7 1.195 1.23 1.28 1.35 1.43 1.475 1.555 1.615 1.685 1.72 

8 1.19 1.22 1.285 1.345 1.425 1.479 1.56 1.61 1.68 1.71 

9 1.19 1.225 1.28 1.35 1.45 1.479 1.56 1.612 1.682 1.715 

10-30 1.19 1.22 1.28 1.35 1.45 1.479 1.56 1.612 1.681 1.71 

 

Time 1am 2am 3am 4am 5am 6am 7am 8am 9am 10am 11am 12am 

Optimal S.W 261 250 238 220 205 238 260 282 289 310 330 355 

S.W 261 250 238 220 205 238 260 282 289 310 330 355 

S.W.D 250 244 242 230 210 212 262 272 300 319 338 358 

Time 1am 2am 3am 4am 5am 6am 7am 8am 9am 10am 11am 12am 

Optimal S.W 370 358 330 310 358 360.5 365 382 372 382 380 315 

S.W 370 358 330 310 358 360.5 365 382 372 382 380 315 

S.W.D 376 374 331 310 360 360.5 365 382 371 382 380 317 
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Table (8) Convergence of electricity price in (        ) with and without disturbances 

     

IV. CONCLUSION 
 

This paper uses a nonlinear control method to 

generate a price-based demand response program. 

The demand response program is formulated as a 

nonlinear power management system, and the 

stability is shown for the system with and without 

disturbances .It is shown that the power 

management system can match supply with demand 

when there are no disturbances, and the 

disturbances will result in the errors in electricity 

price and the matching errors between supply and 

demand. This further degrades the transient 

performance of the system. In the future, we will 

consider the demand response program with 

renewable energy supplies, which will generate a 

stochastic power management system. Further 

results should be given for the stability of the 

stochastic system with and without disturbances. 
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