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ABSTRACT 

 

In this paper, we studied the most commonly used heterostructure for two—dimensional transport is composed 

of the two semiconductors. GaAs and AlxGa1-xAs, which has nearly the same lattice parameter. In the latter 

material, a fraction (commonly x-0.3) of the Ga atoms in the GaAs lattice is replaced by AI atoms, thus keeping 

III-v ration the same. For x<0.45 the semiconductor AlxGa1-xAs has a direct band gap, arger than that of GaAs, 

being approximately proportional to the AI content; a widely used expression, due to Casey and Panish 16 (1978) 

is E gap-1.424 +1.247 xeV at room temperature, although slightly different values have been reported by other 

workers. 
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I. INTRODUCTION 

 

In the last thirty years  or so, there  has  been  a  dramatic   increase   of interest in the  physics  and   application  

of  structure  (mainly realized    in the  semiconducting   materials)   which  can  be  described  as  ‘low-

dimensional’. In  the  case  of  electronic  transport  , this  term  refers  to  a system  in   which   the mobile   

charge   carriers   are  constrained   by   potential   barriers  so that  they lose   one  or   more degrees of freedom 

for motion;  the  system  becomes   two, one  or  even  zero   dimensional, depending on whether the potential 

barriers confine  in one, two or three dimensions, respectively. It is important to realize that the dimensionality 

is not an absolute property, but is related to the length scales which determine the physical properties under 

study. Some length scale that can be important for transport are sample dimensions, de Broglie wavelength, 

magnetic length, effective Bohr radius, elastic scattering  length, inelastic scattering length and phase coherence 

length. By changing the carrier concentration, the magnetic field or the sample dimensions one can, in certain 

cases, change the effective dimensionality of a system, this enables the influence of the dimensionality and the 

effects of a dimensional crossover to be studied directly Berggren, 1987). 

 

II. MATHEMATICAL FORMATION USED IN THE EVALUATION 

 

Magnetotransport measurements in homogeneous samples, characterized by a resistivity tensor, are established 

experiments with a sound theoretical basis which has been discussed, for instance, by Beer (1963) and Seeger 

(1985). Most theories have been derived for the three dimensional case,but we will present their two 
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dimensional equivalent here. The standard geometry for a so-called Hall bar,(the geometry of a two dimensional 

system is sketched). It is essential a rectangularly shaped sample with current contacts (1 and 5) at the two ends 

and potential probes(2,3,4,6,7 and 8) at the sides. Experimentally, the shape is usually defined by etching, and 

electrical contacts to the two dimensional electron gas in GaAs and AlxGa1-xAs  heterostructure are made by 

alloying a metal (e.g. In or Aug ENi alloy) into the contact regions; this  gives low resistance ohmic 

contacts,although the process is rather critical (Murakamiet al 1986, Tlwarl et al 1987, Kamada et al 1987).  Only 

the component of the magnetic field perpendicular to the two dimensional system influences the electrical 

transport directly. The parallel component mainly influences the energy of quantization of the motion in the 

third dimension (Ando 1975),whereas the spin splitting (Zeeman splitting) is influenced by the total magnetic 

field. 

 

The 2D resistivity tensor ρ describes the electrical transport in a material by a generalization of Ohm’s law. As 

in three dimensions, it related the local electric fielf F to the local current density J by F= ρ J. The inverse of ρ is 

the conductivity tensor, σ , which is given explicity in equation (4). The components of σ are related to those of 

ρ by the tensor relations σxx = ρxx/ (ρ2xx + ρ2xy) , where use has been made of the relationships ρxx = ρxy and ρxy 

=-ρyx appropriate for an isotropic material. We define the components of σ ,ρ and J with reference to the x and 

y axes of the Hall bar. Ix, the total current flowing sample in the x direction, is given by Ix = ∫Jx(x,y) by and is 

independent of x because of cuurent conservation. The distribution of J over the width of the sample is defined 

by Kirchhoffs laws, i.e. it is determined by current conservation and continuity of the electric field. The 

magnetotransport coefficients  are resistances defined as the ratio of the transeverse or longitudinal voltages to 

the surrent ix; thus the hall resistance,Rxy, is Vy/Ix, where Vy = V8,2 or V7,3, for example , an the magneto 

resitance, Rxx is Vx/Ix, where, for example, Vy=V4.2 (It is important to realize that the word magnetiresistance 

is used in the literature with two different meaning : the first, used in this thesis, is defined as the resistance in 

a magnetic field, Rzz(B), and the second is defined by the additional resistance due to the magnetic field, Rxx(B)- 

Rxx(0) in our notation). These coefficients are determined by integrals over the local resistivity tensor; we thus 

have 

 

           (1) 

 

 

           (2) 

 

 

 

 

 

When the resistivity tensor is homogeneous (ρ independent of x and y ) over the sample, equation (1) and (2) 

reduce to 

 

           (3) 
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           (4) 

 

 

 

 

Where θH = tan-1 (ρxy/ρxx) is the Hall angle (the angle between the electric field and the current and the parts 

in large parentheses contain the geometrical factors calculated by Wick (1954)and by Lippmann and Kuhrt 

(1958).Far from the ends of a long Hall bar we obviously have a homogeneous current flow with Jy(x,y) = 0, 

resulting in Rxy = ρ xy and R xy = (d2.4/d7.3) ρ xx, (di.j is the sample dimesion between contact I and j). 

A long Hall bar geometry can be used to determine the 2D electron density, ns,by (Seegar 1985) 

 

          (5,a) 

 

(here e is the electronic charge and the Hall factor, rH, is – 1-2, depending on the scattering process present in 

the material, the Fermi energy and the strength of the magnetic field). Similarly, the Hall mobility, μH is given 

by 

 

                                              (5,b) 

 

 

 

 

And is thus realted to the drift mobility,  maelectrons μ, by μH = rHμ. These equations are only useful for material 

characterization at low, non-quantising magnetic fields; the effects of higher magnetic fields will be 

considered.We give two examples of the potential distribution over a Hall bar geometry in a homogeneous 

material, as calculated by Wakabayashi and Kawaji (1978). No electric field can current from crossing a metal 

semiconductor interface over its full length, because then the Hall Voltage in the semiconductor would be short 

circuited. This effect ρxy/ρxx =σxy/σxx → . In a strong magnetic field, most of the current will therefore enter 

a sample in one corner of the contact, and leave it in the diagonally opposite corner of the other current contact, 

thus avoiding the short circuiting effect. Changing the direction of the magnetic field (and thus the sign of θH) 

makes no difference in this respect. Because voltages are only generated where a current flows, the Hall voltage 

will be built up in two corners (where the equipotential lines converge). At the bottom of the discussion we see 

that the Hall voltage is indeed built up only on one side of the Hal bar with respect to a current contact. Changing 

the direction of the magnetic field also changes the side where the Hall voltage appears. 

A geometry that has quite different properties, because the Hall voltage is short-circuited, is the Corbino disc. It 

is essentially a circular geometry, as sketched in the discussion . A current I flows between the inner and outer 

contacts of the ring of semiconductor, and the voltage between these contacts is measured. In a homogeneous 

material with the geometry, the electric field can only be built up in the radial direction (because of rotational 
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symmetry). The current will flow at the Hall angle with respect to the electric field, as shown by the broken 

lines in the figure. The resistance R10 between the inner and the outer contact is defined by 

     (6) 

 

Here ri and r0 are the inner radius and the outer radius, respectively, and the radial  electric field F(r) is 

determined by  current concervation; Σxx is the diagonal component of the cobductivity tensor, σ . In a Corbino 

disc, it is difficult to determine the off-diagonal terms of σ directly, thus making this geometry less useful for 

material characterization. 

 

III. DISUSSION AND RESULTS 

 

A simple geometry often used for material characterization is square with a small contact in each corner, 

numbered clockwise )1,….4), say. The magnetic field is applied perpendicular to the sample. Theresistivity is 

calculated from 

     (7) 

 

Where f depends on the relative magnitude of the two terms in brackets above. This method, including 

evaluation of the correction factor f and consideration of a more suitable clover leaf geometry, was first described 

by van der Pauw(1961), Seeger (1985).For thwe Hall resistance, two sets of measurements are performed, each 

with without the magnetic field. In the first one, 1 and 3 are the current contact and the Hall voltage is measured 

between contacts 2 and 4; to eliminate geometrical factors, the role of contact pairs, 1,3 and 2,4 is then 

interchanged. For isotropic material, the Hall resistance is then given by the average of these measurements:  

     (8) 

 

Alternatively, measurements may be made with forward and recersed magnetic fiels, and the difference halved 

to give tha Hall resistance. Thus the electron density and the mobility can be obtained by the van der Pauw 

method as well as in the Hall  geometry. Material characterization using both methods often gives results 

differing by a few percent. Both techniques essentially rely on the homogeneity of the material to calculate ns 

and μ from the measured quantities. Inhomogeneities may be one of the reasons for the different results; a test 

for the homogeneity of the resistivity over a sample is the six probe method proposed by van Haarent et al (1988). 
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