

Pairwise Regular in Bitopological Spaces

Dr. Sanjay Kumar Roy Shankar Bigha, Jehanbad, Bihar, India

First of all we present definitions of different types of pairwise regular spaces.

Definition (1) : In a bitopological space (X, P, Q), P is said to be regular with respect to Q if for every point $x \in X$ and for every Q- closed set F not containing x, there exist two disjoint sets G and H such that G is P – open and H is Q – open and satisfy condition.

 $X \in G \text{ and } F \subseteq H$, ,(1)

If P is regular with respect to Q and Q is regular with respect to P then (X, P, Q) is called pairwise regular.

Definition (2) : A bitopological space (X, P, Q) is said to be weak pairwise regular if given any point $x \in X$ and either a P- closed or Q- closed set F not containing x there exist disjoint sets U and V which are open either in P or in Q such that

 $X \in U, F \subset V, \dots$ (2)

Definition (3) : A bitopological space (X, P, Q) is said to be quasi pairwise regular if closed and open set in the definition (2) are replaced by quasi-closed and quasi open sets.

How we improve the definition (1) in term of 12- pre open (pre closed) and 21- pre open (pre closed).

Definition (4) : Let (X, T_1, T_2) be a bitopological space. Then T_1 is said to be *- regular with respect to T_2 if for every point $x \in X$ and for every 21- pre closed set F not containing X_1 there exist two disjoint sets G and H such that G is 12- pre open, H is 21- Pre open and satisfy the condition (1).

The bitopological space (X, T_1 , T_2) is said to be regular if a T_1 is *- regular with respect to T_2 and T_2 is *- regular with respect to T_1 .

Similarly, definition (2) can be improved as follows :

Definition (5) : A bitopological space (X, T_1 , T_2) is said to be weak pairwise - regular if given any point $x \in X$ and either a 12- pre closed or 21- pre closed set F not Containing x there exist disjoint sets U and V which are either 12- pre open or 21- pre open such that condition (2) is satisfied.

Now we improve theorem (Sinha, 1998) as follows :

Theorem (1) : Let (X, T₁, T₂) be a bitopological space. Then T₁ is *-regular with respect to T₂ iff for each $x \in X$ and each 21- pre open set V containing x there exist 12- pre open set U and 21- pre closed set L such that

 $X \in U \subset L \subset V$,.....(3)

Proof. Suppose that for a bitopological space (X, T₁, T₂), T₁ is *- regular with respect to T₂. Let $x \in X$ and let V be a 21- pre open set containing x.

Then V^c is 21- pre closed and X \notin V^c. Since (X, T₁, T₂) is T₁ *- regular with respect to T₂, there exist 12- pre open set U and 21- pre open set W such that

 $\mathbf{x} \in \mathbf{U}, \mathbf{V}^{\mathsf{C}} \subset \mathbf{W} \text{ and } \mathbf{U} \cap \mathbf{W} = \phi$:

This means that $x \in U \subset W^c \subset V$. If we put $W^c = L$ then L is 21- pre closed and $x \in U \subset L \subset V$. So condition (3) is necessary condition.

Conversely, suppose that the condition given in theorem is satisfied. Let $x \in X$ and let B be a 21- pre closed set not containing x. Then B^c is 21- pre open and $x \in B^c$. So according to our given condition there exist 12- pre open set U and 21- pre closed set L such that-

 $x \in U \subset L \subset B^{C}$.

This means that $x \in U$, $B \subset L^{C}$ and $U \cap L^{C} = \phi$. This proves that T_{1} is *- regular with respect to T₂.

Remark : Similar result can be obtained for a bitopological space to be T₂*- regular with respect to T₁.

Thus we have the following result :

Theorem (2) : Let (X, T₁, T₂) be a bitopological space. Then it is pairwise *- regular iff the following conditions are satisfied:

(1) For each $x \in X$ and for each 12- pre open set V with $x \in V$ there exist 21- pre, open set U and a 12- pre closed set L such that $x \in U \subset L \subset V$, and (ii) For each $x \in X$ and for each 21- pre open set V with $x \in V$ there exist a 12- pre open set U and a 21- pre closed set L such that $x \in U \subset L \subset V$.

References :

- Saegrove, M. J., parwise com, plete regularity and compactification in bitopolotical spaces, J. London Math. Soc. 7 (1973) P. P. 286-290.
- SINHA, S.K. A Study to the pariwise properties in bitopological spaces, Ph.D. Thesis submitted to Magadh University, 1998.
- 3. Singal, A.R. and Arya, S.P. (1971) : On pairwise almost regular spaces, Glosnik mat. 6 (26), 335.
- 4. Singal, M.K. and Mathur, A. (1969) : On nearly compact spaces, Bull.V.M.1.4 (6), 702.
