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ABSTRACT 

 

In the present paper, we analytically discussed the phenomenon of instability in polyphasic flow through 

porous media with the assumption of mean pressure. We consider that water is injected at a uniform rate into 

an oil-saturated porous medium, and at the interface between the two fluids, there arise protuberance of water 

into oil zone at relatively greater speeds, compared to the average movement of the interface. In this paper, we 

have applied a continuous group transformation technique of a similarity analysis, which reduces the governing 

non-linear partial differential equation to a non-linear ordinary differential equation. The existence and 

uniqueness of solution of this reduced solution is indicated. A perturbation solution of equation is obtained 

using the method of composite expansions. 

Keywords : Non-Linear Ordinary Differential Equation, Homogeneous Medium, Linear Functional  

 

 

I. INTRODUCTION 

 

The phenomenon of instability in polyphasic flow 

through homogeneous porous media without capillary 

pressure was examined from a statistical view point by 

Sheidegger and Johnson [1]. Verma [2] has explained 

the behavior if instability in a displacement precess 

through heterogeneous porous medium. The present 

paper analytically discussed the phenomenon of 

instability in polyphasic flow through a homogeneous 

medium with mean capillary pressure [3]. The non-

linear partial differential equation governing the 

phenomenon has been reduced to a non-linear 

ordinary differential equation by the continuous 

group transformation technique of similarity analysis 

[4]. The existence and uniqueness of the solution of 

the problem has also been indicated [5]. A 

perturbation solution has been obtained, which 

should give consistent approximation under the 

conditions of uniqueness. 

 

II. STATEMENT OF THE PROBLEM 

 

We consider here that there is a uniform water 

injection into an oil saturated porous medium of 

homogeneous physical characteristics, such that he 

injected water cuts through the oil formation and 

gives rise to protuberances (instability), thus 

furnishing a well developed fingers flow [6]. Here a 

unidimensional flow is considered, x indicating the 

co-ordinate in the direction of flow with the origin at 

the interface. Due to the pressure of a large formation 

of water at he boundary x=0, it is assumed that the 

water saturation at this boundary is almost equal to 1, 

and this initial saturation is further assumed to remain 

constant during this displacement process. Our 

particular interest in this paper is to explore the 
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possibilities of transforming the system of partial 

differential equation along with initial and boundary 

conditions, that govern this phenomenon, into an 

ordinary differential equation with suitable conditions, 

by the application of similarity analysis and to 

indicate the existence and uniqueness of the reduced 

system, which is reasonably known. Under the 

conditions for which the uniqueness of solution, thus 

insuring the reasonableness of the approximation. 

 

III. FUNDAMENTAL EQUATION 

 

The seepage velocity of water (𝑉𝑤)  and oil (𝑉𝑜)  are 

given by Darcy’s law as, 

 

 𝑉𝑊 = −(
𝑘𝑤

𝛿𝑤
) ∙ 𝐾 [

𝜕𝑝𝑊

𝜕𝑥
]   (3.1) 

 𝑉𝑜 = − (
𝐾𝑜

𝛿𝑜
) ∙ 𝐾 [

𝜕𝑃𝑜

𝜕𝑥
]    (3.2) 

 

Where K is the permeability of the homogeneous 

medium, 𝑘𝑤 and 𝑘𝑜 are the relative permeabilities of 

water and oil, which are functions of respective 

saturations of water and oil 𝑆𝑤 and 𝑆𝑜. 𝑝𝑤 and 𝑝𝑜  are 

pressures in the water and oil phases. 𝛿𝑤  and 𝛿𝑜  are 

kinetic velocities.  

 

The equation of continuity of the two phases are 

 

 𝑃
𝜕𝑆𝑤

𝜕𝑡
+

𝜕𝑉𝑤

𝜕𝑥
= 0    (3.3) 

    𝑃
𝜕𝑆𝑜

𝜕𝑡
+

𝜕𝑉𝑜

𝜕𝑥
= 0                (3.4) 

Where P is the porosity of the medium. From the 

definition of phase saturation, it is evident that,  

   𝑆𝑤 + 𝑆𝑜 = 1   (3.5) 

 

CAPILLARY PRESSURE: 

The capillary pressure ′𝑝𝐶 ′ is defined as the pressure 

discontinuity between the flowing phases across 

their common interface and is a function of the 

phase saturation. We assume a continuous linear 

functional relation of the form, 

𝑝𝑐 = −𝛽𝑆𝑤     (4.1) 

𝑝𝑐 = 𝑝0 − 𝑝𝑤     (4.2) 

 

Where 𝛽 is constant.  

 

RELATIVE PERMEABILITIES: 

For definiteness of the mathematical analysis, we 

assume standard relationships, due to Scheidegger 

and Johnson [1] between phase saturations and 

relative permeabilities as 

𝑘𝑤 = 𝑆𝑤 ,    𝑘𝑜 = 1 − 𝑆𝑤 = 𝑆𝑜   (5.1) 

FORMULATION OF DIFFERENTIAL SYSTEM: 

To derive the equation of motion for saturation, we 

substitute the value of 𝑉𝑤 and 𝑉𝑜 from equations (3.1-

2) into equations (3.3-4) respectively, getting   

𝑃
𝜕𝑆𝑤

𝜕𝑡
=

𝜕

𝜕𝑥
[
𝑘𝑤

𝛿𝑤
 𝐾

𝜕𝑃𝑤

𝜕𝑥
] = 0   (6.1) 

𝑃
𝜕𝑆𝑜

𝜕𝑡
=

𝜕

𝜕𝑥
[
𝑘𝑜

𝛿𝑜
 𝐾

𝜕𝑃𝑝

𝜕𝑥
] = 0   (6.2) 

Eliminating 
𝜕𝑃𝑤

𝜕𝑥
 from equations (6.1) and (4.2), we 

get, 

𝑃
𝜕𝑆𝑤

𝜕𝑡
=

𝜕

𝜕𝑥
[𝐾

𝑘𝑤

𝛿𝑤
 (

𝜕𝑝𝑜

𝜕𝑥
−

𝜕𝑃𝑐

𝜕𝑥
)]   (6.3) 

Combining equations (6.2) and (6.3) and using 

equation (3.5), we get 

𝜕

𝜕𝑥
[𝐾 (

𝑘𝑤

𝛿𝑤
+ 

𝑘𝑜

𝛿𝑜
)

𝜕𝑝𝑜

𝜕𝑥
−

𝑘𝑤

𝛿𝑤
𝐾

𝜕𝑃𝑐

𝜕𝑥
] =  0   (6.4) 

Integrating (6.4) with respect to 𝑥, we get, 

𝐾 (
𝑘𝑤

𝛿𝑤
+ 

𝑘𝑜

𝛿𝑜
)

𝜕𝑝𝑜

𝜕𝑥
−

𝑘𝑤

𝛿𝑤
𝐾

𝜕𝑃𝑐

𝜕𝑥
= −𝑉  (6.5) 

Where V is constant of integration, whose value will 

be determined by later analysis.  

Equation (6.5) can be rearranged as,  

𝜕𝑝𝑜

𝜕𝑥
= −

𝑉

𝐾 (
𝑘𝑤
𝛿𝑤

+ 
𝑘𝑜
𝛿𝑜

)
+

(
𝜕𝑃𝑐
𝜕𝑥

)

1+
𝑘𝑜
𝑘𝑤

∙
𝛿𝑤
𝛿𝑜

   (6.6) 

Using (6.6) in (6.3), we obtain,  
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𝑃
𝜕𝑆𝑤

𝜕𝑡
+

𝜕

𝜕𝑥
[

𝑘𝑜
𝛿𝑜

  
  𝜕𝑝𝑐
𝜕𝑥

1+
𝑘𝑜
𝑘𝑤

∙
𝛿𝑤
𝛿𝑜

+
𝑉

1+
𝑘𝑜
𝑘𝑤

∙
𝛿𝑤
𝛿𝑜

] = 0  (6.7)  

The value of the pressure of oil(𝑝𝑜) can be written, 

as in [7], in the form 

𝑝𝑜 =
1

2
(𝑝𝑜 + 𝑝𝑤) +

1

2
(𝑝𝑜 − 𝑝𝑤) =  �̅� +

1

2
𝑝𝑐 (6.8) 

where  �̅�  is the mean pressure which is constant.  

Using (6.8) in (6.5), we get  

𝑉 =
𝐾

2
[
𝑘𝑤

𝛿𝑤
− 

𝑘𝑜

𝛿𝑜
]

𝜕𝑃𝑐

𝜕𝑥
    (6.9) 

Substituting this value of V in (6.7), we get,  

𝑃
𝜕𝑆𝑤

𝜕𝑇
+

1

2

𝜕

𝜕𝑥
[𝐾 (

𝑘𝑤

𝛿𝑤
)

𝜕𝑝𝑐

𝜕𝑆𝑤

𝜕𝑆𝑤

𝜕𝑥
 ] = 0  (6.10) 

Substituting the linear functional form of 𝑝𝑐 and 𝑘𝑤 

from (4.1) and (5.1), and setting 𝑋 =
𝑥

𝐿
, 𝑇 =

𝑡

𝐿2,  

where L is a constant reference length, equation 

(6.10) reduced to 

𝑃
𝜕𝑆𝑤

𝜕𝑇
−

𝛽𝐾

2𝛿𝑤

𝜕

𝜕𝑥
[𝑆𝑤  

𝜕𝑆𝑤

𝜕𝑥
] = 0   (6.11) 

Equation (6.11) is the desired non-linear partial 

differential equation of motion for water saturation 

that governs the flow of two immiscible phases in a 

homogeneous porous medium. We can write down 

the relevant initial and boundary conditions 

associated with the description of the above model as, 

𝑆𝑤(𝑋, 0) = 0,   𝑆𝑤(0, 𝑇) = 𝑆𝑤0
< 1, lim

𝑋→∞
𝑆𝑤(𝑋, 𝑇) =

0                              (6.12) 

SIMILARITY ANALYSIS: 

The similarity analysis of the equation (6.11) is done 

by one-parameter continuous group transformation 

method [4]. (6.11) can be put in the form 

𝑃
𝜕𝑆𝑤

𝜕𝑇
+ 𝑄 (

𝜕𝑆𝑤

𝜕𝑋
)
2
+ 𝑄 𝑆𝑤  

𝜕2𝑆𝑤

𝜕𝑋2 = 0   (7.1) 

Where 𝑄 = −(
𝐾𝛽

2𝛿𝑤
) 

Let 𝑆 = 𝜃 (𝑋, 𝑇)       (7.2) 

by the solution of the problem (7.1). consider the 

continuous group of transformations of (S, X, T) – 

space in the form, 

𝑆𝑤
∗ = 𝑣𝑆,        𝑋∗ = 𝛼𝑋,      𝑇∗ = 𝛽𝑇  (7.3) 

with parameter (𝑣, 𝛼, 𝛽) . If 𝑣(𝛽)  and 𝛼(𝛽)  are 

somehow determined, then (7.3) will be a family of 

one parameter (𝛽)  continuous group of 

transformations and a new solution surface 

corresponding to (7.2) is. 

𝑆𝑤
∗ = 𝜃∗(𝑋∗, 𝑇∗)      (7.4) 

𝜕𝑆𝑤

𝜕𝑇
=

𝛽

𝑣

𝜕𝑆𝑤
∗

𝜕𝑇∗

𝜕𝑆𝑤

𝜕𝑋
=

𝛼

𝑣

𝜕𝑆𝑤
∗

𝜕𝑋∗

𝜕2𝑆𝑤

𝜕𝑋2 =
𝛼2

𝑣2

𝜕2𝑆𝑤
∗

𝜕𝑋∗2

 

]
 
 
 
 

      (7.5) 

Substituting these values in (7.1), we get  

𝛽

𝑣
(𝑃

𝜕𝑆𝑤
∗

𝜕𝑇∗ ) + 𝑄
𝛼2

𝑣2 (
𝜕𝑆∗

𝜕𝑋∗)
2
+ 𝑄

𝑆𝑤
∗

𝑣
 
𝛼2

𝑣
 
𝜕2𝑆∗

𝜕𝑋∗2 = 0 (7.6) 

Thus, for invariance of (7.1) under the 

transformations, we must have 

𝑣 = 1;    𝛼2 = 𝛽 ⇒ 𝛼 = √𝛽.     

Hence, (7.3) becomes,  

𝑆𝑤
∗ = 𝑆𝑤 , 𝑋∗ = √𝛽𝑋,   𝑇∗ = 𝛽𝑇  (7.7) 

Thus, (7.7) is the required continuous group of 

transformations which leaves the equation (7.1) 

invariant. Hence, for 𝑠𝑤
∗ , we have, 

𝑃
𝜕𝑆𝑤

∗

𝜕𝑇∗ + 𝑄 (
𝜕𝑆𝑤

∗

𝜕𝑋∗)
2
+ 𝑄𝑆𝑤

∗  
𝜕2𝑆𝑤

∗

𝜕𝑋∗2 = 0  (7.8) 

Now, due to uniqueness, 𝜃 must be same function of 

(𝑋∗, 𝑇∗) as 𝜃∗ is of (𝑋, 𝑇), i.e., 
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𝜃∗(𝑋, 𝑇) = 𝜃(𝑋∗, 𝑇∗)     (7.9) 

As a consequence of transformation (7.7) and the 

invariance condition (7.9), we obtain a functional 

equation which must be satisfied by the solution; 

therefore, (7.9) implies, 

𝜃(√𝛽𝑋, 𝛽𝑇) = 𝜃(𝑋, 𝑇)     (7.10) 

Now, 𝜕/𝜕𝛽 of (7.10) implies, 

𝑋

2 √𝛽

𝜕

𝜕𝑋
 [𝜃(√𝛽 𝑋, 𝛽𝑇)] + 𝑇

𝜕

𝜕𝑇
[𝜃(√𝛽𝑋, 𝛽𝑇)] = 0  (7.11) 

as 𝛽 → 1, 𝜃(𝑋, 𝑇)  satisfies a first order partial 

differential equation 

𝑋

2

𝜕

𝜕𝑋
𝜃(𝑋, 𝑇) + 𝑇

𝜕

𝜕𝑇
𝜃(𝑋, 𝑇) = 0  (7.12) 

The general solution of (7.12) involves an arbitrary 

function. The characteristic equation associated with 

(7.12) are  

𝑑𝑋

(
𝑋

2
)
=

𝑑𝑇

𝑇
=

𝑑𝜃

𝑂
      (7.13) 

The integral of the first two in (7.13) implies 𝜂 =
𝑋

√𝑇
     (7.14) 

and that of for the last pair gives  

𝜃(𝑋, 𝑇) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝐹(𝜂)   i.e. 𝑆𝑤 = 𝐹(𝜂) (7.15) 

Therefore, the general solution to (7.13) is of the 

form 

𝑆𝑤 = 𝐹(𝜂);    𝜂 =
𝑋

√𝑇
     (7.16) 

Functional relation (7.16) gives the similarity 

transformation which is determined by using the 

one-parameter continuous group o transformations 

(7.7). This similarity transformation reduces the 

equation (7.1) to an ordinary differential equation 

(𝐹𝐹′)′ −
𝑃

2𝑄
 
1

2
 𝜂 𝐹′(𝜂) = 0    (7.17) 

Where the primes denote differentiation with 

respect to 𝜂 

Substituting the value of Q here, we get,  

[𝐹(𝜂)𝐹′(𝜂)]′ +
𝑃 𝛿𝑤

𝐾𝛽
  𝜂 𝐹′(𝜂) = 0  (7.18) 

This similarity transformation is compatible with 

our original initial boundary value problem, as we 

see that the set of conditions (6.12) get transformed 

to 

𝐹(0) = 𝑆𝑤0 < 1.    Lim𝜂→∞ 𝐹(𝜂) = 0  (7.19) 

UNIQUENESS AND EXISTENCE OF SOLUTIONS: 

In this section, we mention the results on the 

uniqueness and existence of solutions of the problem 

(7.18-19). We rewrite the system as,  

𝑑

𝑑𝜂
[𝐹(𝜂)

𝑑𝐹

𝑑𝜂
] + ln

𝑑𝐹

𝑑𝜂
= 0 

𝐹(0) = 𝑆𝑤𝑜
, lim
𝜂→∞

 𝐹(𝜂) = 0
}    (8.1) 

The system (8.1) is a special case of more general 

problem discussed in [8], where one of the authors 

has discussed these aspects of similar problems. 

The uniqueness and existence of a weak solution 

with compact support for the problem 

𝑑

𝑑𝜂
[𝐹𝑚 𝑑𝐹

𝑑𝜂
] + ln

𝑑𝐹

𝑑𝜂
= 𝑞𝐹,    0 < 𝜂 < ∞ 

𝐹(0) = 𝐹0,  𝐹(∞) = 0
}  (8.2) 

has been discussed by Gilding and Peletier [9]. There 

is was proved that if 𝐹0 > 0, 1 ≥ 𝑂,  and 2𝑙 + 𝑞 > 0, 

then there exists a unique 𝑎 > 0  and a unique 

solution of the problem (8.2) such that 𝐹(𝜂) > 0 in 

0 < 𝜂 < 𝑎  and 𝐹(𝜂) = 0, 𝑎 < 𝜂 < ∞.  In equation 

(8.1), we have 𝑙 = (
𝑃𝛿𝑤

𝐾𝛽
) > 0, 𝑞 = 0 and 𝐹𝑜 > 0 . 

Hence, the prerequisites for applying the results of 

the above mentioned reference are satisfied. Also, 

we know that all classical solutions are weak 

solutions. Hence, the uniqueness of a classical 

solution, if it exists, is assured. The existence of 
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classical solution is under investigation by the 

authors.    

PERTURBATION SOLUTION 

 

In this section we find an approximate solution of 

the problem (7.17), using the singular perturbation 

technique of composite expansions. Substituting the 

value of Q in equation (7.17) it becomes, 

𝐹 𝐹′′ + 𝐹′2 + 𝜆𝜂𝐹′ = 0  (9.1) 

Where 𝜆 =
𝑃𝛿𝑤

𝐾𝛽
, 𝐹 = 𝐹(𝜂),  and the prime denotes a 

differentiations with respect to 𝜂.   

Corresponding to the transformation (7.15-16), the 

initial and boundary conditions given by (6.12) 

become 

𝐹(0) = 𝑆𝑤𝑜
;  lim

𝜂→∞
𝐹(𝜂) = 0   (9.2) 

Setting 𝐹(𝜂) = 1 − 𝜃𝑓(𝜂); 0 < 𝛿 = 1 − 𝑆𝑤𝑜
<

1,  equations (9.1-2) become 

(1 − 𝜃𝑓)𝑓′′ − 𝜃 𝑓′2 + 𝜆𝜂 𝑓′ = 0 (9.3) 

𝑓(0) = 1,   𝑓(∞) = 𝛼(≠ 0) say (9.4) 

Keeping in mind the physical situation of the 

problem we take ′𝜃′  as a perturbation parameter. To 

find the perturbation solution we employ the 

method of composite expansions [10].  

Let   

𝑓 = ∑ 𝜃𝑟 𝑓𝑟(𝜂) ∞
𝑟=0    (9.5) 

be the solution of the problem (9.3). Substituting 

(9.5) into equation (9.3) and equation the 

coefficients of each of 𝜃0 and 𝜃1 on both sides of the 

resulting equation, we get 

𝑓0
′′ + 𝜆𝜂𝑓0

′ = 0      

 (9.6) 

𝑓1
′′ + 𝜆𝜂𝑓1

′ = 𝑓0𝑓0
′′ + 𝑓0

′2   (9.7) 

Now, the solution to equation (9.6) is, 

𝑓0(𝜂) = 𝐴 ∫ 𝑒𝑥𝑝. (−
1

2
𝜆𝜃2)𝑑𝜃

𝜂

0
+ 𝐵 (9.8) 

Using the conditions given by (9.4) in (9.8), it 

becomes 

𝑓0(𝜂) = 1 + (𝛼 − 1)𝑒𝑟𝑓. (𝜂√
𝜆

2
 ) (9.9) 

Substituting the value of 𝑓0(𝜂) from (9.9) in (9.7), it 

becomes  

𝑓1
′′ + 𝜆𝜂𝑓1

′ = (𝛼 − 1)2 𝜋−12𝜆 (𝜆𝜂 + 1)𝑒𝑥𝑝. (−𝜆𝜂2) (9.10) 

Equation (9.10) is a linear differential equation in 

𝑓1
′(𝜂) and its solution is obtained as  

𝑓1
′(𝜂) = (𝛼 − 1) (

2𝜆

𝜋
) [𝑒𝑥𝑝. (−

1

2
𝜆𝜂2) −

𝑒𝑥𝑝. (−𝜆𝜂2) + √
𝜋

2
 𝑒𝑟𝑓. (𝜂 √

𝜆

2
 )  𝑒𝑥𝑝. (−

1

2
𝜆𝜂2)] + 𝑐 ∙

𝑒𝑥𝑝. (−
1

2
𝜆𝜂2)   (9.11) 

Where C is constant of integration. Integrating (9.11) 

w.r.t. 𝜂   and simplifying the result with 

approximation for 𝑒𝑥𝑝. (−
1

2
𝜆𝜂2),  we have 

𝑓1(𝜂)  ≅ (𝛼 − 1)√
2𝜆

𝜋
  [𝑒𝑟𝑓. (𝜂√

𝜆

2
) − (

1

√2
) ∙

𝑒𝑟𝑓. (𝜂 √𝜆) +
1

2
𝜂2 −

1

6
𝜂4] −

(𝛼−1)√2𝜆

√𝜋 
∙ [

√2−1

√2
+

𝜋

2
] 𝑒𝑟𝑓. (𝜂√

𝜆

2
) + 1   (9.12) 

Substituting (9.9) and (9.12) into (9.5), we get, 

𝑓1(𝜂)  ≅ 1 + (𝛼 − 1)𝑒𝑟𝑓. (𝜂√
𝜆

2
) + 𝜃  [(𝛼 −

1)√
2𝜆

𝜋
 [𝑒𝑟𝑓. (𝜂√

𝜆

2
 ) −

1

√2
𝑒𝑟𝑓. (√𝜆 ∙ 𝜂) +

1

2
 𝜂2 −

1

6
𝜂4] −

(𝛼 − 1)√
2𝜆

𝜋
 (

√2−1

√2
+

𝜋

2
) ∙ 𝑒𝑟𝑓. (𝜂√

𝜆

2
 ) + 1  ]            (9.13) 
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