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ABSTRACT 
 

For many years, researchers have been working toward the successful application of finite element technology to the 

design of reinforced concrete flat plate systems due to practical restrictions inherent in simplified or approximate 

design techniques. Flat plates are slabs of uniform thickness which are directly supported on columns without use of 

beams. Flat plates are to be designed for the positive and negative bending moments in the column strip and middle 

strips. The slab is to be designed with adequate safety margin against punching shear. Flat plates can be designed as 

waffle slabs by removing concrete in the tension zone and placing the steel reinforcement in the form of groups of 

bars at intervals equal to the grid size. This arrangement leads to saving of material and reduction in self-weight. 

Flat plates provide satisfactory floors for panels with adequate headroom due to absence of beams, column capitals 

or drop. However, in the case of exterior panels, edge beams will be necessary. 

Keywords : Flat slab, FEM, waffle slab 

 
I. INTRODUCTION 

 

The purpose of this study was the implementation and 

verification of a procedure in SAFE to Analysis of 

reinforced concrete flat plate systems based on the 

results of finite element analysis. 

Flat Plate Systems 

Flat plates are widely used in multi-storey structures 

such as office buildings and car parking. A flat plate 

structure is composed of slabs and columns only, 

interconnected as shown in Figure 1.  

The foremost advantage of the flat plate structure over 

other types of structures is that the elimination of beams 

and girders reduces overall floor depth, thereby creating 

additional floor space for a given building height.  

 
Figure 1 : Flat Plate Reinforced Concrete Structure 

 

In general, the flat plate system may be of one of the 

three categories, as illustrated in Figure 1 

 

a) Standard construction where exterior   columns 

are located at the edge of the slabs; 

b) Band-beam slabs where the portion of the slab 

along the column line is thickened in one direction 

or the other. This is coupled with a thickness 

reduction at the remaining portions of the slab; 

and, 

c) Flat plates with overhanging edges 
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a)Standard           b)Band-beam    c)Flat plate with 

 

Figure 2.  Flat plate category 

 

II. METHODS AND MATERIAL 

 
2. Literature Review 

 

2.1 Punching Shear Failure Mechanisms and 

Patterns 

Punching shear failure normally occurs around a column 

or a concentrated load on a slab. It is associated with a 

particular collapse mechanism in which a conical plug of 

concrete suddenly perforates the slab above the column 

(Menetrey, 2002). 

 

 
(a) Shear only          (b) Moment and Shear 

 

Figure 2: Typical Punching Shear Failures 

 

2.2 Modeling of Slabs Using Finite Elements 

2.2.1 General Modeling Requirements 

The finite element method is an approximate technique, 

and as such, results computed using the finite element 

method must be critically evaluated before relied upon 

in a design application. This process of critical 

evaluation involves several steps for any structure being 

analyzed. The number of elements used in a model can 

greatly affect the accuracy of the solution. In general, as 

the number of elements, or the fineness of the mesh, is 

increased, the accuracy of the model increases as well. 

As multiple models are created with an increasingly 

finer mesh, the results should converge to the correct 

numerical solution such that a significant increase in the 

number of elements produces an insignificant change in 

a particular response quantity. Not all response 

quantities will converge at the same rate, however. 

Displacements will generally be the most accurate 

response quantity computed and will converge faster 

than stresses, with the exception of some elements 

derived with hybrid stress formulations, in which case 

the stresses can converge at the same rate or higher than 

the displacements. 

 

2.2.2 Assumptions for R.C. Flat Plates in Finite 

Element Analysis 

 

The type of analysis applied in this study is a linear 

elastic analysis. Reinforced concrete is a highly 

nonlinear material made up of many elastic, brittle 

materials, the stress-strain curve of concrete indicates 

some degree of ductility. Concrete begins cracking at a 

tensile stress of approximately 8 to 15% of its 

compressive strength. At the ultimate level, IS 

456:2000 states that the maximum allowable strain at 

the extreme concrete compression fiber shall be 

assumed equal to 0.0035. This analysis assumes the 

gross section is resisting the applied loads at all stress 

levels, and that the stress-strain relationship is perfectly 

linear, even if the compressive strain in the concrete 

exceeds 0.003 or if the tensile stress at the location of 

the reinforcing bars exceeds the yield stress of the steel. 

it allows the application of a linear analysis that ignores 

geometric nonlinearity. 

 

2.3 Finite  Element Representation 

The finite element analysis of a continuum starts with 

the subdivision of the physical system into an 

assemblage of discrete elements. The displacement 

vector {d} at any point within a particular structure is 

approximated by interpolating functions associated with 

generalized coordinates i d, which are the displacements 

of the nodes of the finite element discretization of the 

structure. For a finite element this approximation can be 

formally written as 

     

1

1 ... ... .
ele

i

i

d

d N d N N
d

 
 
 

      
 
      

       (1) 

where the components of [N] are, in general, functions 

of position and {d }
ele

  is the vector of the node 

displacements of a particular element. Once the 
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displacements are known at any point within the element, 

the strains can be determined from the strain-

displacement relation. In the discrete problem this can 

be formally written as 

                         .
ele

B d                (2) 

The matrix [B] will be derived later for beams and slabs 

separately. The stresses can now be determined from the 

material constitutive law 

                    . o oD             (3) 

where [D] is the element material matrix, {o} is the 

initial strain vector and {o } is the initial stress vector. 

By applying the virtual work principle or the theorem of 

minimum potential energy to the assemblage of discrete 

elements the following equilibrium equations result 

 

           
0 0

. 0
g

K d F F F R
 

      

      (4) 

The terms in Eq. 3.4 are derived as follows: 

the stiffness matrix [K], 

       . .
T

ele

K B D B dV        (5) 

the nodal forces due to surface traction, 

     .
T

p
ele

F N p dV          (6) 

the nodal forces due to body forces, 

     .
T

g
ele

F N g dV          (7) 

the nodal forces due to initial strains, 

           .
o

T

o

ele

F B D dV


         (8) 

the nodal forces due to initial stresses, 

 

      .
o

T

o

ele

F B D dV


            (9) 

 

In Eqs. 4 - 9 {d} is the vector of node displacements, {R} 

is the vector of applied nodal forces, {p}is the vector of 

surface forces and {g} is the vector of body forces.The 

node displacements {d} can be determined from the 

solution of the  

 

system of simultaneous algebraic equations in Eq. 4, 

whereupon the strains and stresses at any point of the 

structure can be obtained from Eqs. 2 and 3. In a 

nonlinear problem the stiffness matrix [K] depends on 

the displacement vector {d} and the nonlinear system of 

algebraic equations in Eq. 4. 

 

2.4 Numerical Implementation 

 

2.4.1 Iteration Method 

The numerical implementation of the finite element 

model requires the solution of Eq.  

 

             . 0
o op g

K d F F F F R
 

     

 

This is a system of simultaneous nonlinear equations, 

since the stiffness matrix K, in general, depends on the 

displacement vector d. The solution of this system of 

nonlinear equations is typically accomplished with an 

iterative method. The load vector Ris subdivided into 

a number of sufficiently small load increments, which 

are successively applied (Fig. 3.4).  

F

F3

F2

F1

0 r

F4

Actual

Numerical

 
Figure 3. Incremental Load Method without Correction 

 

2.5 Design Strips For Flat Plates 

Figure 4. Panels, Column Strips & Middle Strips 
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a) Column strip  - Column strip means a design 

strip having a width of 0.25 l2 ,  but not greater than 

0.25 l1  on each side of the column centreline, where 

l1  is the span in the direction moments are being 

determined, measured centre to centre of supports 

and l2  is the-span transverse to l1 ,  measured centre 

to centre of supports. 

b) Middle strip  - Middle strip means a design strip 

bounded on each of its opposite sides by the column 

strip. 

c) Panel  -  Panel means that part of a slab bounded 

on-each of its four sides by the centre-line of a 

column or centre-lines of adjacent-spans. 

 

 

III. RESULTS AND DISCUSSION 
 

In order to demonstrate the convergence of a flat plate 

system, a square 6.1 m x 6.1 m, fix-supported flat plate 

was modeled. The geometry of this system is shown in 

Figure 4. The slab was 150 mm thick and was composed 

of M20 concrete. The slab was subjected to its own self-

weight as well as a 2.4 KN/m
2
 live load.The slab was 

analyzed using four different models, each with an 

increasing number of finite elements. Each of these 

models is shown in Figure 5. The four meshes contained 

16 elements (4x4 mesh), 64 elements (8x8 mesh), 256 

elements (16x16 mesh), and 1024 elements (32x32 

mesh), respectively. Fixed support conditions were 

achieved by restraining all translations and rotations for 

the joints along the boundaries. 

 

6.1 m

6.1 m

X

Y

 
Figure 4. Geometry of Flat Plate Model 

 
Figure 5. Finite Element Mesh Models 

 

Table 1. Comparison of SAFE Results with GT 

STRUDL* 

Element Mesh 
Displacement 

(mm) 

Design 

Moment 

(KN-m) 

As, 

Required 

(mm
2
) 

GT 

STRUDL 

16 -15.73 99.41 147.72 

64 -14.71 117.15 174.43 

256 -14.40 121.48 180.93 

1024 -14.33 122.51 182.55 

SAFE 

16 -14.01 101.08 150.27 

64 -14.02 115.85 172.34 

256 -14.31 121.14 180.46 

1024 -14.33 122.48 182.32 

 

*Note : GT STRUDL results as referred by James B. 

Deaton (Aug 2005), GIT, Georgia.  
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Figure 6.  Deflection Comparison from SAFE to GT 

STRUDL 

 

0 200 400 600 800 1000

-5

0

5

10

15

20

%
 D

if
fe

re
n

ce
 -

 A
re

a
 o

f 
S

te
el

No. of Elements

 GT STRUDL

SAFE

 

Figure 7. Comparison of Area of Steel from SAFE to 

GT STRUDL 

 
A. Modeling Of Present Study 

The typical flat plate considered for the present study is 

shown in Fig. 8 and the range of parameters considered 

for the analysis is presented in Table 6.1. 

 
Figure 8. Typical Model of Flat Plate Considered for 

Present Study 

 

Table 6.   Range of Parameters Considered in the 

Present Study 

 

Structure Type 

Reinforced Concrete Flat 

Plate 

Height of Column 3 m 

Length of Slab  5 to 8 m 

Width of Slab  5 to 8 m 

Depth of Slab 200 mm 

Material Properties 

Grade of Concrete M20 

Young’s Modulus of 

Concrete, Ec 22.36068 x 10
6
 KN/m

2
 

Poisson’s Ratio of 

Concrete 0.2 

Density of Concrete 25 KN/m
2
 

Grade of Steel Fe 415 

 

Table 7.   Minimum Depth of Slab from Deflection 

Considerations 

Span (m) 

DEPTH OF SLAB FROM MOMENT 

CONSIDERATION (BIS) 

LL 2 kN/m
2
 

LL 3 

kN/m
2
 

LL 4 

kN/m
2
 

LL 5 

kN/m
2
 

3 66.58 71.02 75.20 79.16 

4 88.77 94.70 100.27 105.55 

5 110.96 118.37 125.34 131.94 

6 133.16 142.04 150.41 158.33 

7 155.35 165.72 175.47 184.72 

8 177.54 189.39 200.54 211.10 

9 199.74 213.07 225.61 237.49 

10 221.93 236.74 250.68 263.88 
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Span 

(m) 

Depth of Slab (mm) Deflection 

BIS ACI SAFE 
Allowable 

(Ln/350) 

Deflection 

from SAFE 

3 104.17 100.00 100.00 8.57 0.52 

4 138.89 133.33 128.00 11.43 1.35 

5 173.61 166.67 156.00 14.29 3.12 

6 208.33 200.00 190.50 17.14 5.56 

7 243.06 233.33 220.00 20.00 9.59 

8 277.78 266.67 250.00 22.86 14.74 

9 312.50 300.00 290.00 25.71 20.66 

10 347.22 333.33 300.00 28.57 29.07 

 

Table 8. Minimum Depth of Slab from Moment 

Considerations 
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Figure 9. Minimum depth of Slab from Deflection 

Considerations  
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Figure 10. Deflection Comparison for SAFE with 

Allowable Deflection   

IV. CONCLUSION 

 
The conclusions that are drawn from the results 

discussed in the present study are: 

 Limiting span/depth ratio’s are very conservative 

leading to higher dead loads in BIS code. It is not 

practical to have the same recommendations for 

beams, one-way slabs, two-way slabs, flat slabs & 

flat plates. Whereas, the ACI specifications based 

on ln are very well specified. 

 ACI Direct Distribution of Moments also more 

categorically stated than BIS. 

 c, whereas 

ACI calculates Vc. 

 GT STRUDL & SAFE have similar convergence 

and result values of Displacement, Moment & 

Area of reinforcement. 

 In both software large no. of elements are not 

necessary for simple plates. Significant changes 

occur from 16 element mesh to a 64 element mesh, 

beyond 64 elements, changes are very small. 
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