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ABSTRACT 

 

In this paper an M/EK/1 queueing system with server vacation, Startup, breakdowns and second optional 

service with impatient customer behavior is considered. All the customers will be given unique type of 

individual service in the first phase and then second phase service will be provided on option of the customer. 

Each service consists of K-phases.We obtain some important system characteristics, such as the number of 

customers in the system, the probability that the server is idle, busy and broken down states, the expected 

waiting time in the system. Sensitivity analysis is also conducted with various parameters on system’s 

performance measures. 
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I. INTRODUCTION 

 

In the Present scenario of globalization the queuing 

models have gained a lot of significance. Some of the 

areas where queueing models have valuable 

applications are traffic flow (vehicles, communications, 

people), Scheduling (patients in hospitals, jobs n 

machines, programs on a computer), and facility 

design (banks, post offices, food courts).The current 

work deal with the transient analysis of a 𝑀/𝐸𝐾/ 1 

Queueing System with two phases of service, N-Policy, 

Server Failure, Customers’ impatient behavior where 

customers may opt a second service in addition to the 

first essential service.  

 

Vacation queueing models have attracted great 

attention of researchers and became an active research 

area. Miller [11] was the first to study an M/G/1 

queueing system where the server is unavailable 

called as vacation for some random length of time.To 

optimize the length of the vacation period that can 

minimize the cost by deciding proper rule for 

switching the server on and off, various types of 

control policies like N-Policy, (M,N)-policy, T-policy, 

(N, T)-policy, min (N,T)-policy, D-policy, (p,T)-

policy, Q-policy are generated among which more 

research is done on N-Policy when compared with 

other control policies. Yadin and Naor [16] were first 

to study the technique of N-policy and have obtained 

the optimal value of the queue size at which to start 

on a single server, assuming that the form of the 

policy is to turn on the server when the queue size 

reaches a certain number N and to turn him off when 

the system size is empty. 

 

Krishna and Lee [9] have first studied two-phase 

queueing system by considering the exhaustive service 

for the M/M/1 queueing system with and without 

gating and derived the sojourn time distribution and 

its mean for an arbitrary customer. Anantha Lakshmi 
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et .al and Vasanta Kumar et al. [1,15] studied the 

optimal control policy of two-phase, N-policy MX/M/1 

and MX/Ek/1 queueing systems with server startup and 

breakdowns, respectively.  

 

 Madan [10] has first studied second optional service 

in an M/G/1 queueing system in which the 

distributions of first essential and second optional 

service times follow General and Exponential 

respectively. He also mentioned some important 

applications in day-to-day life conditions. His work is 

being extended by many other researchers where 

their work includes inclusion of N-Policy, 

breakdowns and optimization. Jau-chung-ke et al. [7] 

aimed to optimize a finite capacity M/M/1 queueing 

model with F-policy where some customers may 

request a second service in addition to the first 

essential service. They derived some important 

performance measures and optimized the cost 

function.  

 

In many real systems, the server may meet 

unpredictable breakdowns or any other interruptions. 

Rama Devi et al. [14] have studied the impact of 

server breakdowns in two phase queueing systems and 

also derived optimum cost with N-Policy. 

These days customers are busy entities. An assumption 

which is often attached to the analysis of many 

queuing model is the customers are willing to wait as 

long as it is necessary to obtain service. A customer is 

said to be impatient if he tends to join the queue only 

when a short wait is expected and tends to remain in 

the line if his wait has been sufficiently small. 

Impatience generally takes three forms. The first is 

balking, the unwillingness of a customer to join a 

queue upon arrival, the second reneging, the 

unwillingness to remain in line after joining and 

waiting, and the third jockeying between lines when 

each of a number of parallel lines has its own queue. 

Haight [4] was the first who introduced concept of 

customer impatience in the queuing theory and still 

people are exploiting this concept in various 

applications. Haight has analyzed the queue where the 

individual customer upon arrival measures the queue 

by its length. Recently, Altman and Yechiali [3] have 

proved that customers become annoyed only when 

the server will be on vacation by making a 

comprehensive study on some queueing models such 

as M/M/1, M/G/1 and M/M/c queue with server 

vacations and customer impatience. Adan et 

al. [5] have worked on queueing models with 

vacations and synchronized reneging. 

 

For practical significance, queueing models are to 

studied with respect to time. Many methods are 

available to solve the transient state of equations. A 

time-dependent solution for the number in a single-

server queueing system with Poisson arrivals and 

exponential service times is derived in a direct way by 

P. R. Parthasarathy[12]. Jacob.M.J. and 

Madhusoodanan.T.P[6] examined the behaviour of the 

infinite capacity M/G/1 model with batch arrivals and 

server vacations in transient state. Dong-Yuh Yang 

and Ying-Yi Wu [2] presented Transient Behavior 

Analysis of a Finite Capacity Queue with Working 

Breakdowns and Server Vacations. Kalidass et 

al.[8] have presented the transient behavior of 

an M/M/1 multiple vacation queue and the 

possibilities of catastrophes. Sudhesh and Francis Raj 

[13] have derived the time dependent system size 

probabilities for an M/M/1 model with working 

vacation.  

 

However, to the best of our knowledge, there is no 

literature which takes time dependent probabilities 

for M/M/1 queueing systems with N-Policy, second 

optional service, server failure and reneging. This 

motivates us to present the current work. The main 

objective of this paper is to calculate various system 

parameters with numerical illustrations by using 

Runge-Kutta method of order 4.  

 

This paper is systematized in V sections. Section II 

details the mathematical model and includes the set of 

https://www.sciencedirect.com/topics/mathematics/transient-behavior
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governing differential equations of the model. In 

Section III, some performance measures are provided. 

Numerical results are given in Section IV. Section V 

concludes the paper. 

 

The main objectives of the analysis carried out in this 

paper are: 

i. To establish the Transient state equations and obtain 

the Transient state probability distribution of the 

number of customers in the system in each state. 

ii. To derive values for the expected number of 

customers in the system when the server is in 

different states 

iii. To carry out sensitivity analysis on the System 

performance measures for various system parameters 

through numerical experiments.   

              

II. THE SYSTEM AND ASSUMPTIONS 

We consider the M/EK/1 queueing model with N-

policy, unreliable server, customer’s impatience and 

second service on optional basis in Transient state 

with the following assumptions: 

 

1. Customers are assumed to arrive according to 

Poisson process with mean arrival rate λ 

Customers will get the service in the order in 

which they arrive. The customers who arrive 

during the first phase service are also allowed to 

join the queue which is in service.  

2. Customers are given service such that Individual 

service times are assumed to be exponentially 

distributed with mean 1/𝜇 in exhaustive manner 

and batch service times in the second phase are 

also exponentially distributed with an average of 

1/𝜷. 

3. Each customer will be given k-phases of service. 

4. The server provides first essential service to all 

existing customers in individual manner. Then it 

proceeds to the second phase and if there is a 

batch of customers of at least b, it provides batch 

service. Then returns to first phase and continues 

the cycle.  

5. The probability to opt second phase is p. 

6. Whenever the system becomes empty, the server 

goes on vacation. As soon as the total number of 

arrivals in the queue reaches or exceeds the pre-

determined threshold N, the server is turned on 

and is temporarily unavailable for the waiting 

customers. The server startup time follows 

exponential distribution with mean 1/θ. As soon 

as the server finishes startup, it starts serving the 

waiting customers. 

7. The breakdowns are generated by Poisson process 

with rates ξ1 for the first phase of service and 𝛽1 

for the second phase of service. When the server 

fails it is immediately repaired at a repair rate ξ2 

in first phase and 𝛽2 in second phase, where the 

repair times are exponentially distributed. After 

repair the server immediately resumes the 

concerned service.  

8. Customers are assumed to be annoyed and renege 

the system. The probability that i th customer will 

renege is (i-1)* α 

 

 

III. Notations 

 

We use the following notations to represent transient probabilities for the system to be in various modes: 

pi,0
1 (t) = p(i customers in the system when server is in Vacation);  i = 1k, 2k, … (N − 1)k  

 pi,0
2 (t) = p(i customers in the system when server is in start − up mode); i = Nk, (N + 1)k, … . , sk  

pi,0
3 (t) = p(i customers in the system when srver is doing first essential service);  i = 0,1k, … . sk  

pi,0
4 (t) =  p(i customers in the system when server is broken down during first essential service);  

i = 0,1k, … . sk  
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pi,j
5 (t) = p(i customers in the system when server is doing second optional service);  

i = 1k, 2k, … . (s − b)k, j = bk, (b + 1)k, … , sk  

pi,j
6 (t) = p(i customers in the system when server is broken down during second optional service); 

i = 1k, 2k, … . (s − b)k, j = bk, (b + 1)k, … , sk 

 

The Transient state equations governing the system size probabilities at any arbitrary point of time are given by 

the following Differential Equations:  

 

𝑑𝑝0,0
1 (𝑡)

𝑑𝑡
= −𝜆𝑝0,0

1 (𝑡) + 𝜇(1 − 𝑝)𝑝1,0
3 (𝑡) + 𝛽𝑝0,𝑗

5 (𝑡); 𝑏𝑘 ≤ 𝑗 ≤ 𝑠𝑘 (1) 

𝑑𝑝𝑖,0
1 (𝑡)+

𝑑𝑡
= −(𝜆+(𝑖 − 𝑘)𝛼) 𝑝𝑖,0

1 (𝑡) + 𝜆𝑝𝑖−𝑘,0
1 (𝑡) + 𝜇(1 − 𝑝)𝑝𝑖+1,0

3 (𝑡) + 𝛽𝑝𝑖,𝑗
5 (𝑡); 𝑏 ≤ 𝑗 ≤ 𝑠, 1𝑘 ≤ 𝑖 ≤ (𝑁 − 1 )k (2) 

𝑑𝑝𝑁𝑘,0
1 (𝑡)+

𝑑𝑡
= −(𝜆+((𝑁 − 1)𝑘)𝛼) 𝑝𝑖,0

1 (𝑡) + 𝜆𝑝(𝑁−1)𝑘,0
1 (𝑡) (3) 

𝑑𝑝𝑖,0
2 (𝑡)+

𝑑𝑡
= −(𝜆+((𝑖 − 1)𝑘)𝛼 + 𝜃) 𝑝𝑖,0

2 (𝑡) + 𝜆𝑝𝑖−𝑘,0
1 (𝑡); (𝑁 + 1)𝑘 ≤ 𝑖 ≤ (𝑠 − 1)𝑘 (4) 

𝑑𝑝𝑠𝑘,0
2 (𝑡)+

𝑑𝑡
= −((𝑠 − 1)𝑘)𝛼 + 𝜃) 𝑝𝑠𝑘,0

2 (𝑡) + 𝜆𝑝(𝑠−1)𝑘,0
1 (𝑡) (5) 

𝑑𝑝𝑖,0
3 (𝑡)+

𝑑𝑡
= −(𝜆 + 𝜇 + 𝜉1 + (𝑖 − 𝑘))𝛼 + 𝜃) 𝑝𝑖,0

3 (𝑡) + 𝜇(1 − 𝑝)𝑝𝑖+𝑘,0
3 (𝑡) + 𝜆𝑝(𝑖−1)𝑘,0

1 (𝑡) + 𝛽 𝑝𝑖,𝑗
5 (𝑡) + 𝜉2 

𝑝𝑖,0
4 (𝑡);  𝑏𝑘 ≤ 𝑗 ≤ (𝑠 − 1)𝑘, 𝑘 ≤ 𝑖 ≤ (𝑁 − 1)𝑘 (6) 

𝑑𝑝𝑖,0
3 (𝑡)

𝑑𝑡
= −(𝜆 + 𝜇 + 𝜉1 + (𝑖 − 𝑘))𝛼 + 𝜃) 𝑝𝑖,0

3 (𝑡) + 𝜇𝑝𝑝𝑖+𝑘,0
3 (𝑡) + 𝜆𝑝(𝑖−1)𝑘,0

1 (𝑡) + 𝛽 𝑝𝑖,𝑗
5 (𝑡) + 𝜉2 𝑝𝑖,0

4 (𝑡) +

𝜃𝑝𝑖,0
2 (𝑡);  𝑏𝑘 ≤ 𝑗 ≤ (𝑠 − 1)𝑘, 𝑘 ≤ 𝑖 ≤ (𝑁 − 1)𝑘 (7) 

𝑑𝑝𝑠𝑘,0
3 (𝑡)

𝑑𝑡
= −(𝜇 + 𝜉1 + (𝑠𝑘 − 𝑘))𝛼 + 𝜃) 𝑝𝑠𝑘,0

3 (𝑡) + 𝜆𝑝(𝑠−1)𝑘,0
1 (𝑡) + 𝜉2 𝑝𝑠𝑘,0

4 (𝑡) + 𝜃𝑝𝑠𝑘,0
2 (𝑡) (8) 

𝑑𝑝𝑖,0
4 (𝑡)+

𝑑𝑡
= −(𝜆 + 𝜉2 + (𝑖 − 𝑘))𝛼) 𝑝𝑖,0

4 (𝑡) + 𝜆𝑝(𝑖−1)𝑘,0
4 (𝑡) + 𝜉1 𝑝𝑖,0

3 (𝑡);  𝑘 ≤ 𝑖 ≤ (𝑠 − 1)𝑘 (9) 

𝑑𝑝𝑠𝑘,0
4 (𝑡)+

𝑑𝑡
= −(𝜉2 + (𝑠𝑘 − 𝑘))𝛼) 𝑝𝑖,0

4 (𝑡) + 𝜆𝑝(𝑠−1)𝑘,0
4 (𝑡) + 𝜉1 𝑝𝑠𝑘,0

3 (𝑡) (10) 

𝑑𝑝0,𝑗
5 (𝑡)+

𝑑𝑡
= −(𝜆 + 𝛽 + 𝛽1)) 𝑝0,𝑗

5 (𝑡) + 𝜇(1 − 𝑝)𝑝𝑘,𝑗
3 (𝑡) + 𝛽2𝑝0,𝑗

6 (𝑡) ;  𝑏𝑘 ≤ 𝑗 ≤ (𝑠 − 1)𝑘 (11) 

𝑑𝑝0,𝑠𝑘
5 (𝑡)+

𝑑𝑡
= −(𝛽 + 𝛽1)) 𝑝0,𝑠𝑘

5 (𝑡) + 𝛽2𝑝0,𝑠𝑘
6 (𝑡)  (12) 

𝑑𝑝𝑖,𝑗
5 (𝑡)

𝑑𝑡
= −(𝜆 + 𝛽 + 𝛽1 + (𝑗 − 𝑘))𝛼) 𝑝𝑖,𝑗

5 (𝑡) + 𝜆𝑝(𝑖−1)𝑘,𝑗
5 (𝑡) + 𝛽2 𝑝𝑖,𝑗

6 (𝑡);  𝑏𝑘 ≤ 𝑗 ≤ (𝑠 − 1)𝑘, 𝑘 ≤ 𝑖 ≤

(𝑠 − 1)𝑘 𝑎𝑛𝑑 𝑖 + 𝐽 < 𝑠𝑘 (13) 

𝑑𝑝𝑖,𝑗
5 (𝑡)

𝑑𝑡
= −(𝛽 + 𝛽1 + (𝑗 − 𝑘))𝛼) 𝑝𝑖,𝑗

5 (𝑡) + 𝜆𝑝(𝑖−1)𝑘,𝑗
5 (𝑡) + 𝛽2 𝑝𝑖,𝑗

6 (𝑡); 𝑏𝑘 ≤ 𝑗 ≤ (𝑠 − 1)𝑘, 𝑘 ≤ 𝑖 ≤ (𝑠 −

1)𝑘 𝑎𝑛𝑑 𝑖 + 𝐽 = 𝑠𝑘 (14) 

𝑑𝑝0,𝑗
6 (𝑡)

𝑑𝑡
= −(𝜆 + 𝛽2)) 𝑝0,𝑗

6 (𝑡) + 𝛽1 𝑝0,𝑗
5 (𝑡);  𝑘 ≤ 𝑖 ≤ (𝑠 − 1)𝑘 (15) 

𝑑𝑝0,𝑠𝑘
6 (𝑡)

𝑑𝑡
= −(𝛽2)) 𝑝0,𝑠𝑘

6 (𝑡) + 𝛽1 𝑝0,𝑠𝑘
5 (𝑡) (16) 
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𝑑𝑝𝑖,𝑗
6 (𝑡)

𝑑𝑡
= −(𝜆 + 𝛽 + 𝛽2 + (𝑖 − 𝑘))𝛼) 𝑝𝑖,𝑗

6 (𝑡) + 𝜆𝑝(𝑖−1)𝑘,𝑗
6 (𝑡) + 𝛽1 𝑝𝑖,𝑗

5 (𝑡);  𝑏𝑘 ≤ 𝑗 ≤ (𝑠 − 1)𝑘, 𝑘 ≤ 𝑖 ≤

(𝑠 − 1)𝑘 𝑎𝑛𝑑 𝑖 + 𝐽 < 𝑠𝑘 (17) 

𝑑𝑝𝑖,𝑗
6 (𝑡)

𝑑𝑡
= −(𝛽 + 𝛽2 + (𝑖 − 𝑘))𝛼) 𝑝𝑖,𝑗

6 (𝑡) + 𝜆𝑝(𝑖−1)𝑘,𝑗
6 (𝑡) + 𝛽1 𝑝𝑖,𝑗

5 (𝑡);  𝑏𝑘 ≤ 𝑗 ≤ (𝑠 − 1)𝑘, 𝑘 ≤ 𝑖 ≤ (𝑠 −

1)𝑘 𝑎𝑛𝑑 𝑖 + 𝑗 = 𝑠𝑘  

 

IV. Performance measures 

 

Some performance measures are calculated to 

predict the system behaviour using the probabilities 

obtained through Runge-Kutta method: 

1. 𝑃(𝑠𝑒𝑟𝑣𝑒𝑟 𝑏𝑒𝑖𝑛𝑔 𝑖𝑑𝑙𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡) = 𝐼(𝑡) =

∑ 𝑝𝑖,0
1 (𝑡) + ∑ 𝑝𝑖,0

2 (𝑡) 

2. 𝑃(𝑠𝑒𝑟𝑣𝑒𝑟 𝑏𝑒𝑖𝑛𝑔 𝑏𝑢𝑠𝑦 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡) = 𝑆(𝑡) =

∑ 𝑝𝑖,0
3 (𝑡) +  ∑ ∑ 𝑝𝑖,𝑗

5 (𝑡)    

3. 𝑃(𝑠𝑒𝑟𝑣𝑒𝑟 𝑏𝑒𝑖𝑛𝑔 𝑏𝑟𝑜𝑘𝑒𝑛 𝑑𝑜𝑤𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡) =

𝐵(𝑡) = ∑ 𝑝𝑖,0
4 (𝑡) +   ∑ ∑ 𝑝𝑖,𝑗

6 (𝑡)    

4. 𝐿(𝑡) =

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 =

∑ 𝑛 ∗ 𝑝𝑛 

5. 𝑊(𝑡) = 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 =
𝐿(𝑡)

(𝜆 ∗ (1 − 𝑝𝑚𝑎𝑥.𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡))⁄  

 

V. Numerical results 

MATLAB software is used to develop the 

computational program to find out system 

performance measures by giving numeric values to all 

the parameters. And also the effect of various 

parameters on the system performance measures is 

studied. The effect of different parameters in the 

system on performance measures(length and waiting 

time) is summarized in Tables 1-10. 

In all numerical computations, the model parameters 

are taken as 

𝑁 = 4, 𝑠 = 6, 𝜆 = 0.4, 𝜇 = 0.8, 𝜃 = .001, 𝛽 = 2, 𝛽1

= 0.001, 𝛽2 = 0.002, 𝜉1 = 0.002, 𝜉2

= 0.003, 𝑝 = .4 𝑎𝑛𝑑 𝑘 = 2 

 

 

VI. Conclusions and further scope of study 

 

In this paper we have detailed transient analysis of a 

M/Ek/1 Queueing System with Two-Phase, N-Policy, 

Server Failure and Second Optional Batch Service 

with Customers impatient behaviour. Sensitivity 

analysis is also performed to know the influence of 

various parameters on system performance measures. 

This study can be extended as Steady State analysis by 

considering the general distribution for service times 

with cost analysis can be done for optimum solution. 
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Appendix 

 

TABLE 1: Effect of 𝜆 

Parameter (𝜆) t 0.5 1 1.5 2 2.5 

0.4 
𝐿𝑆

(𝑡)
 0.4 0.8 1.199999 1.599996 1.999985 

𝑊𝑆
(𝑡)

 1.001066 2.014221 3.058966 4.151799 5.300224 

0.41  
𝐿𝑆

(𝑡)
 0.41 0.82 1.229999 1.639995 2.049984 

𝑊𝑆
(𝑡)

 1.001141 2.015157 3.06253 4.160094 5.314761 

0.42  
𝐿𝑆

(𝑡)
 0.42 0.84 1.259999 1.68 2.1 

𝑊𝑆
(𝑡)

 1.001219 2.016126 3.06619 4.17 5.33 

0.43  
𝐿𝑆

(𝑡)
 0.43 0.86 1.289999 1.719994 2.149981 

𝑊𝑆
(𝑡)

 1.0013 2.017128 3.069943 4.177105 5.344059 

 

TABLE 2: Effect of 𝜇 

Parameter (𝜇1) t 0.5 1 1.5 2 2.5 

0.8 
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.99998488 

𝑊𝑆
(𝑡)

 1.001066 2.014220795 3.058965688 4.151798812 5.300223566 

0.81  
𝐿𝑆

(𝑡)
 0.4 0.799999924 1.199999114 1.5999955 1.999984733 

𝑊𝑆
(𝑡)

 1.001066382 2.014220793 3.058965664 4.151798698 5.300223198 

0.82  
𝐿𝑆

(𝑡)
 0.4 0.799999923 1.199999104 1.599995455 1.999984586 

𝑊𝑆
(𝑡)

 1.001066382 2.014220791 3.058965641 4.151798584 5.300222832 

0.83  

𝐿𝑆
(𝑡)

 0.4 0.799999922 1.199999095 1.599995409 1.99998444 

𝑊𝑆
(𝑡)

 1.001066382 2.014220789 3.058965617 4.15179847 5.300222467 
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TABLE 3: Effect of 𝜃 

Parameter (𝜃) t 0.5 1 1.5 2 2.5 

0.001 
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.99998488 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.058965688 4.151798812 5.300223566 

0.0011  
𝐿𝑆

(𝑡)
 0.4 0.799999918 1.199999035 1.5999951 1.999983368 

𝑊𝑆
(𝑡)

 1.001066382 2.014220776 3.058965469 4.151797697 5.300219786 

0.0012  
𝐿𝑆

(𝑡)
 0.4 0.79999991 1.199998948 1.599994654 1.999981855 

𝑊𝑆
(𝑡)

 1.001066382 2.014220758 3.058965249 4.151796582 5.300216005 

0.0013  
𝐿𝑆

(𝑡)
 0.4 0.799999903 1.19999886 1.599994208 1.999980342 

𝑊𝑆
(𝑡)

 1.001066382 2.014220739 3.058965029 4.151795467 5.300212223 

 

TABLE 4: Effect of 𝛽1 

Parameter (𝛽1) t 0.5 1 1.5 2 2.5 

0.001 
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.99998488 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.058965688 4.151798812 5.300223566 

0.0011  
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.99998488 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.058965688 4.151798812 5.300223567 

0.0012  
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.999984881 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.058965688 4.151798813 5.300223568 

0.0013  
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995547 1.999984881 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.058965688 4.151798813 5.30022357 

 

TABLE 5: Effect of 𝛽2 

Parameter (𝛽2) t 0.5 1 1.5 2 2.5 

.002 
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.99998488 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.058965688 4.151798812 5.300223566 

.0021  
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.99998488 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.058965688 4.151798812 5.300223566 

.0022  
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.99998488 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.058965688 4.151798812 5.300223566 

0.0023  
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.99998488 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.058965688 4.151798812 5.300223566 

 

TABLE 6: Effect of 𝜉1 

Parameter (𝜉1) t 0.5 1 1.5 2 2.5 

.002 
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.99998488 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.058965688 4.151798812 5.300223566 

.0021  
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.99998488 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.058965688 4.151798812 5.300223566 

.0022  
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.99998488 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.058965688 4.151798812 5.300223566 

.0023  
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.99998488 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.058965688 4.151798812 5.300223567 

 

TABLE 7: Effect of 𝜉2 

Parameter (𝜉2) t 0.5 1 1.5 2 2.5 

.003 𝐿𝑆
(𝑡)

 0.4 0.799999925 1.199999123 1.599995546 1.99998488 
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𝑊𝑆
(𝑡)

 1.001066 2.014220795 3.058965688 4.151798812 5.300223566 

.0031  
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.99998488 

𝑊𝑆
(𝑡)

 1.001066 2.014220795 3.058965688 4.151798812 5.300223566 

.0032  
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.99998488 

𝑊𝑆
(𝑡)

 1.001066 2.014220795 3.058965688 4.151798812 5.300223566 

.0033  
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.99998488 

𝑊𝑆
(𝑡)

 1.001066 2.014220795 3.058965688 4.151798812 5.300223566 

 

TABLE 8: Effect of p 

Parameter (𝑝) t 0.5 1 1.5 2 2.5 

.4 
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.99998488 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.058965688 4.151798812 5.300223566 

.41  
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999124 1.59999555 1.999984896 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.05896569 4.151798822 5.300223605 

.42  
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999125 1.599995554 1.999984911 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.058965691 4.151798832 5.300223644 

.43  
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999125 1.599995558 1.999984927 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.058965693 4.151798842 5.300223683 

 

TABLE 9: Effect of β 

Parameter (β) t 0.5 1 1.5 2 2.5 

2 
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.99998488 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.058965688 4.151798812 5.300223566 

3  
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.99998488 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.058965688 4.151798812 5.300223566 

4  
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.99998488 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.058965688 4.151798812 5.300223566 

5  
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.99998488 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.058965688 4.151798812 5.300223566 

 

TABLE 10: Effect of 𝑘 

Parameter (𝑘) t .5 1 1.5 2 2.5 

2 
𝐿𝑆

(𝑡)
 0.4 0.799999925 1.199999123 1.599995546 1.99998488 

𝑊𝑆
(𝑡)

 1.001066382 2.014220795 3.058965688 4.151798812 5.300223566 

3  
𝐿𝑆

(𝑡)
 0.6 1.199999833 1.799998061 2.399990236 2.999967179 

𝑊𝑆
(𝑡)

 1.501599573 3.021331056 4.588446973 6.227690511 7.950310011 

4  
𝐿𝑆

(𝑡)
 0.8 1.599999705 2.399996619 3.199983147 3.999944003 

𝑊𝑆
(𝑡)

 2.002132764 4.028441228 6.117927307 8.303577767 10.60038279 

5  
𝐿𝑆

(𝑡)
 1 1.999999543 2.999994847 3.999974602 4.999916578 

𝑊𝑆
(𝑡)

 2.502665955 5.035551313 7.647406819 10.37946138 13.25044497 

 


