
IJSRST173382 | Received : 25 March 2017 | Accepted : 04 April 2017 | March-April - 2017 [(3)2: 290-293]

© 2017 IJSRST | Volume 3 | Issue 1 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X
Themed Section: Science and Technology

 290

Discover Broken Authentication and Session Management Vulnerabilities in

ASP.NET Web Application
Rupal R Sharma

1
, Ravi K Sheth

2

 1M.Tech, Cyber Security, Student, Department of Information Technology, Raksha Shakti University, Ahmedabad, Gujarat, India
2Assistant Prof., Department of Information Technology, Raksha Shakti University, Ahmedabad, Gujarat, India

ABSTRACT

Today, web application security is most significant battlefield between victim, attacker and resource of web service.

The websites which are written in ASP.NET might contain security vulnerabilities which are not seen to the owner

of the website. This paper describes an algorithm that aims in the detection of security vulnerabilities of broken

authentication and session management. The suggested algorithm of this paper performs a scanning process for

website and web application files. Our scanner tool relies on studying the source code of the application depending

on ASP.NET files and the code behind files (C sharp C#). A program written for this purpose is to generate a report

that describes most leaks and vulnerabilities types by mentioning the file name, leak description and its location.

The aim of the paper is to discover the broken authentication and session management vulnerabilities. The suggested

algorithm will help organization and developer to fix the vulnerabilities and improve the overall security.

Keywords: Web security, session management, session hijack, Broken Authentication, ASP.NET

I. INTRODUCTION

World Wide Web has evolved from a system that

delivers static pages to a platform that supports

distributed applications, known as web applications and

become one of the most prevalent technologies for

information and service delivery over Internet. The

increasing popularity of web application can be

attributed to several factors, including remote

accessibility, cross-platform compatibility, fast

development, etc. Web application security is a branch

of Information Security that deals specifically with

security of websites, web applications and web services.

[1]

II. METHODS AND MATERIAL

1. OWASP Top Ten vulnerabilities

A1 Injection.

A2 Broken Authentication and Session Management

A3 Cross-Site Scripting (XSS)

A4 Insecure Direct Object References.

A5 Security Misconfiguration.

A6 Sensitive Data Exposure.

A7 Missing Function Level Access Control.

A8 Cross-Site Request Forgery (CSRF)

A9 Using Components with Known Vulnerabilities

A10 Unvalidated Redirects and Forwards

 OWASP TOP 10 Vulnerabilities [2]

The OWASP define that web application related

functions related to authentication and session

management are not implement correctly which is

allowing attackers to compromise password, keys or

session tokens or to exploit other implementation flaws

to assume other user identities. [3]

Web application security statistics report also shows

average vulnerability age by risk which display below.

[4]. Following chart show that how many days need to

fix or recover any web application which is affect by

different attacks? By analysis we concluded that broken

authentication and session management vulnerabilities

are very harmful for web application. It is take more

days to recover the web application.

Figure 1. Average time to fix vulnerability

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

291

The organization of this document is as follows. In

Section 2 (Methods and Material), I give detail of most

harmful attacks which cause by broken authentication

and session management vulnerabilities in asp.net web

application. In Section 3(Implementation of Suggested

Algorithm), I present our propose algorithm and its

steps. In Section 4 (Result and Discussion), present our

research findings and our analysis of those findings.

Discussed in Section 5(Conclusion) a conclusion is the

last part of paper, its end or result.

2. Vulnerability Types

A. Brute Force Attack:

A brute force attack is a trial-and-error method used to

obtain information such as a user password or personal

identification number (PIN). [6]

B. Hijack Session

Session hijacking is the exploitation of a valid computer

session. It is also to gain unauthorized access to

information or services in a computer system. It‟s

nothing but hijacking a session.

The attacker needs the cookie form the victim to hijack

the session. This is can be implemented by creating one

form and make it submit to the attacker site.

<form name = 'x' action = 'attackersiteadd' method =

'post'>

<input type = hidden value = '<script> +

document.cookie +

</script>'>

</form>

<script> x.submit () </script> [7]

C. Replay Attack

A replay attack is a form of network attack in which a

valid data transmission is maliciously or fraudulently

repeated or delayed. This is carried out either by the

originator or by an adversary who intercepts the data and

retransmits it, possibly as part of a masquerade attack by

IP packet substitution such as stream cipher attack.

D. Session Fixation Attack

Session fixation attacks attempt to exploit the

vulnerability of a system which allows one person to set

another person‟s session identifier (SID). Most session

fixation attacks are web based, and most rely on session

identifiers being accepted from URLs (query string) or

POST data.

E. Session timeout

The Timeout property specifies the time-out period

assigned to the Session object for the application, in

minutes. If the user does not refresh or request a page

within the time-out period, the session ends.

Environments Affected from „Broken Authentication and

Session Management‟. [6]

3. Suggested Algorithm

Following algorithm describe the leaks. We developed

algorithm and it will generate in python [8]. This

algorithm [9] consists of 12 steps where each steps

handle a specific kind of leaks.

Check for Broken Authentication and session

management:

These algorithms scan the following types of files which

are „aspx‟, „aspx.cs and „web.config‟. [10]

Step 1 : Check if “ValidateRequest” attribute in

web.config file exits and has value is false then

report there is vulnerability.

We should prevent displaying of the detailed

errors information to users which may serve

hackers.

Step 2 : Check if “debug” attribute in web.config file

exists and has value is true then report that there

is vulnerability.

Step 3 : Check if any TextboxID name in .aspx file is not

validated using RegularExpressionValidator or

RangeValidator then report there is vulnerability.

Step 4 : Check if “SessionState” mode is off in

web.config file then report there is vulnerability.

Step 5 : Check “Timeout” of the session is define or not

in session state of web.config. If timeout of the

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

292

session is not exists in the web.config then report

there is vulnerability.

Step 6 : Check authentication is exists or not in the

web.config. If exists then check that it‟s deny

all5 anonymous user or not. If “deny users” are

not exists in web.config then report there is

vulnerability

Step 7 : Check if “Request.Form, Request.QueryString,

Request.Cookies” commands in .aspx, .aspx.cs

files does not have any kind of AntiXss methods

then report there is vulnerability.

Step 8 : check if after logout, cookie remove code exists

or not in web.config. If it‟s not exists then report

there is vulnerability.

Step 9 : Check at the logout function, session destroy

function exists or not, if it does not exist then

report there is vulnerability.

Step 10 : Check “autocomplete” attribute in the form is

on or off, if it is “on” then report there is

vulnerability. [5]

Step 11 : Check “cookieless” value exists in session

state of web.config file. If it does not exists

then report there is vulnerability.

III. RESULTS AND DISCUSSION

We tried to test our algorithm on some online websites.

However, we are not able to get any live website.

Therefore, we are forced to check it offline. For this

purpose we created web application and put it into IIS

server. We have also downloaded some code from

following website:

https://www.codeproject.com

https://www.github.com

Sample of vulnerabilities scanning in asp.net web

application is shown in the following snap shot:

Figure 2. Snapshot of scanning vulnerabilities

We scan more than twenty website/web application in

the various tools but we don‟t find root cause of the

attacks and broken authentication and session

management vulnerabilities. For that, we purpose this

algorithm which shows the exact location in the source

code which vulnerable and causes the attack.

The detection process for security vulnerabilities in

ASP.NET web application is a complex process, where

most of code is written by somebody else and there is no

documentation to determine the purpose of some code.

Other factor due to the fact that ASP.NET which is part

of .NET framework that separate the HTML code from

the programming code in two files, one for aspx file

another for the programming code depending on the

compiled language like Visual Basic, C# and java script.

Since the C# is the most common language in use

around the world with ASP.NET files, we have use that

compiled language in the construction of our proposed

algorithm to addition in aspx files. Therefore, the

scanning processes at least those three types of files

which are aspx, configuration and C#. The developed

program tried to scan different forms of writing in code,

where there are no standard form followed in writing

some code and the presence of some alternatives to

some of the commands.

IV. CONCLUSION

Reduce the broken authentication and session

management vulnerability in any web application or

website requires two things; The first thing is, a

conscious developer who is aware to the responsibility

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

293

which should be accompanied by instilling security into

the application from the beginning of programming [11],

and the website/ application owner role in inspecting his

site/ application for vulnerabilities before making the

website public. This paper describes our development

tool that is designed to discover vulnerabilities in the

source code of websites which help to developer to

reduce the vulnerabilities in web application. After

scanning process, it will generate a report list all the

discovered leaks and vulnerabilities by displaying the

name of the infected file, the description and its

location.This paper has limitations that it‟s only work

for asp.net and their supported language. In future, we

can make this type of algorithm for PHP or java base

language.

V. REFERENCES

[1] Xiaowei Li and Yuan Xue, “A survey on Web

Application Security” 2012 Institute of Electrical

and Electronics Engineers(IEEE)

[2] OWASP Vulnerability Top ten, Retrieved on

February,2017 from

https://www.owasp.org/index.php/Category:Vulne

rability

[3] The Open Web Application Security Project

Book, b OWASP Foundation,

https://www.owasp.org/images/f/f8/OWASP-Top-

10-2013

[4] “VULNERABILITY LIKELIHOOD BY CLASS”

, web security statistics report 2016[online]

Retrieved on February,2017 from

https://info.whitehatsec.com/rs/675-YBI-

674/images/WH-2016-Stats-Report-FINAL.pdf

[5] Tony Hunt, “OWASP Top ten for .net

developers”, by plural sight publication.

[6] Rajyalakshmi A.G, “broken authentication and

session management” Retrieved on March

2017,from http://www.triadsquare.com/broken-

authentication-and-session-management

[7] Huyam AL-Amro and Eyas El-Qawasmeh,

“Security Vulnerabilities and Leaks in ASP.NET

Websites”, 2012 International Conference on E-

Learning and E-Technologies in Education

(ICEEE).

[8] Paul Gries and Jennifer Campbell, Design

Algorithm, Practical programming 2
nd

 edition- A

Introduction to computer science using python 3,

2013 The Pragmatic Programmers, LLC.

[9] Paul Gries and Jennifer Campbell, Reading and

writing files, Practical programming 2
nd

 edition- A

Introduction to computer science using python 3,

2013 The Pragmatic Programmers, LLC.

[10] ASP.NET Web Forms page code model,

https://msdn.microsoft.com/en-

us/library/015103yb.aspx

[11] B. Sullivan, "Top 10 security vulnerabilities in

.NET configuration files", Retrieved on February,

2017 from [Online]

http://www.devx.com/dotnet/Article/32493/1954.

