

Heterocedasticity and Cointegration Test Relationship (Case Study GDP and Gov. Expenditure in 194 Country) Dr. Siti Chanifah

Lecture FEB Muhammadiyah Tangerang, University of Muhammadiyah Tangerang, Banten, Indonesia

ABSTRACT

The purpose of this study to see if there is a relationship heterocedasticity test and cointegration test on the use of economic variables such as GDP and Gov. Expenditure. In this study used regression analysis and cointegration to get the proof of their relationship to the occurrence heterocedasticity co integration of data in the long term. Of the studies that have been performed concluded that, with the form data that is homocedasticitas used regression models 1, 2 and 3 and not heterocedasticity on regressions 4 and 5, the data on economic variables GDP and Gov. Expenditure in 194 countries in 2014 cointegrated.

Keywords : Heterocedasticity, Cointegration, GDP, Gov. Expenditure

I. INTRODUCTION

2) White

Heterocedasticity and Cointegration Theory

Tests of Heteroskedasticity

Consider the linear regression model

Yi= $X'i\beta$ + ϵi

Based on this regression model there are several regression-based tests of heteroskedasticity -- equivalent test statistics that are not regression-based do exist, but those obviate the comparisons that we are after.

1) Breusch-Pagan

The Breusch-Pagan test of heteroskedasticity has the following steps:

- Estimate the regression model above using OLS, and get the residuals ε^ˆi, and the standard error of regression, σ²=∑ni=1ε^ˆ2in.
- Then, estimate the following auxiliary regression by OLS -- a regression of the standardized residuals on the cross-products of the included regressors.

$\epsilon^2 i \sigma^2 = \operatorname{vech}(\mathbf{X} i \otimes \mathbf{X}' i)' \gamma + v i$

• The test statistic here is 12ESS, which is distributed $\chi 2K+K(K+1)2$, where there are K regressors in the model.

• The White test is based on a regression that looks very similar to the one employed by BP

 $\epsilon^2 i = vech(Xi \otimes X'i)'\gamma + vi$

- The test statistic here is nR2 which is again distributed $\chi 2K+K(K+1)2$.
- 3) Aside: Equivalence of a modified version of BP and White

You would not be mistaken in thinking that there exists a version of the BP test that is exactly equivalent to the White test (which is robust to departures of the residuals from normality). This is discussed in Waldman (1983).

Tests of cointegration

Now consider the Engle-Granger two-step residualbased tests of cointegration.

• Here, the model is

$Y1t = \beta 0 + Y'2t\beta + \varepsilon 1t$

Again, we fit the regression model using OLS, and get the estimated residuals, $\varepsilon^{1}t$.

• We now conduct an ADF unit root test on these residuals, that is, we fit the regression

$$\Delta \varepsilon^{1} t = \beta 0 + \gamma \varepsilon^{1} t - 1 + \sum j = 1 p \gamma j \Delta \varepsilon^{1} t - j + \nu t$$

and conduct a t-test of the regression coefficient $\gamma=0$ using the Engle-Yoo critical values.

Bottomline

The heteroskedasticity tests regress squares of fitted residuals on regressors, and cointegration tests regress differences of fitted residuals on lags and lags of differences of those residuals (compare the three boxed regressions).

Every model has certain features, each of which can be exploited to form tests of that model. For unit root models, the ADF tests use the specific feature in a specific model -- ρ =1 in an autoregressive model -- to test for unit roots. There are other tests, for example, the variance ratio tests that exploit the increasing variance aspect of unit roots. They are all, as you can imagine, related.

II. DATA AND RESEARCH METHOD

Time and Data Research

The author in this study using GDP data and Gov. Expenditure of 194 countries in the world, to the data in 2014. The study was done by the authors at the time in December 2016. Here the authors show a general overview of research data from 194 countries:

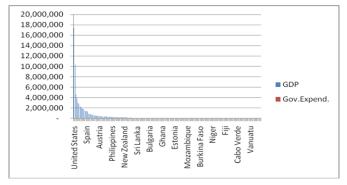


Figure 1 : GDP and Gov. Expenditure

Source : Procedd by author

Analisys Data Tehnique

In this study the authors used data analysis techniques Heterocedasticity and Cointegration in seeing the relationship of variant data in the long term. Heterocedasticity technique that is used in this study is test Goldfeld-Quandt (G-Q). As for Cointegration test, the authors use the model Johansen Cointegration.

III. RESULTS AND DISCUSSION

Here at the show for heteroscedasticity test results in the form of regression table 5:

Table 1 : Regression analisys for heterocedasticity

Dependent Var	iable:	GDP
---------------	--------	-----

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-195882.6	367707.8	-0.532713	0.5948
GOV_EXPEND	37613.38	22190.23	1.695042	0.0917
R-squared	0.014744	Mean dependent	var	398089.3
Adjusted R-squared	0.009612	S.D. dependent va	ar	1559562.
S.E. of regression	1552049.	Akaike info criter	ion	31.35831
Sum squared resid	4.63E+14	Schwarz criterion		31.39199
Log likelihood	-3039.756	Hannan-Quinn cr	iter.	31.37195
F-statistic	2.873167	Durbin-Watson st	tat	0.203242
Prob(F-statistic)	0.091689			

Source : Procedd by author

Table 2 : Regression	analisys for	heterocedasticity
Dependent Variable: D(GDP)	1	

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C D(GOV EXPEND	-89848.32) 4861.053	47515.03 7080.263	-1.890945 0.686564	0.0601
R-squared	0.002462	Mean depende		-90253.69
Adjusted R-squared	-0.002761	S.D. depender Akaike info crit	nt var	659139.7
S.E. of regression Sum squared resid	660049.0 8.32E+13	Schwarz criteri	on	29.64832 29.68213
Log likelihood F-statistic	-2859.063 0.471370	Hannan-Quinn Durbin-Watson		29.66202 0.342757
Prob(F-statistic)	0.493190			

Source : Procedd by author

Table 3 : Regression	analisys for heterocedasticity
Dependent Variable: GDP(-1)	

•	~ /			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
с	-194633.1	373112.8	-0.521647	0.6025
GOV_EXPEND_(-1)	37545.44	22466.15	1.671200	0.0963
R-squared	0.014412	Mean depende	entvar	400151.7
Adjusted R-squared	0.009252	S.D. depender	ntvar	1563353.
S.E. of regression	1556104.	Akaike info crit	erion	31.36358
Sum squared resid	4.62E+14	Schwarz criteri	on	31.39739
Log likelihood	-3024.585	Hannan-Quinn	criter.	31.37727
F-statistic	2.792911	Durbin-Watson	stat	0.203159
Prob(F-statistic)	0.096320			

Source : Procedd by author

Table 4 : Regression analisys for heterocedasticity
Dependent Variable: LOG(GDP)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	6.945767	1.300728	5.339908	0.0000
LOG(GOV_EXPEND_)	1.290009	0.477270	2.702894	0.0075
R-squared	0.036655	Mean depende	ntvar	10.43195
Adjusted R-squared	0.031638	S.D. dependen	tvar	2.381956
S.E. of regression	2.343973	Akaike info crite	erion	4.551828
Sum squared resid	1054.888	Schwarz criterio	on	4.585517
Log likelihood	-439.5273	Hannan-Quinn	criter.	4.565469
F-statistic	7.305637	Durbin-Watson	stat	0.066570
Prob(F-statistic)	0.007490			

Source : Procedd by author

 Table 5 : Regrssion analisys for heterocedasticity

 Dependent Variable: SQR(GDP)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-150.6888	224.2222	-0.672051	0.5024
SQR(GOV_EXPEND_) 130.8270	56.42439	2.318625	0.0215
R-squared	0.027237	Mean depende	entvar	362.1584
Adjusted R-squared	0.022171	S.D. depender	nt var	517.9900
S.E. of regression	512.2157	Akaike info crit	erion	15.32562
Sum squared resid	50374057	Schwarz criteri	on	15.35931
Log likelihood	-1484.586	Hannan-Quinn	criter.	15.33927
F-statistic	5.376021	Durbin-Watson	stat	0.090022
Prob(F-statistic)	0.021468			

Source : Procedd by author

From the analysis, five tables of regression that has been created, it can be given a conclusion that: to table 1, 2 and 3 the value of $X \land 2$ count are described in squared, when compared with the value of $X \land 2$ with 5% alpha, degrees freedom (df) = m-1 is the number of dependent and independent variables, the variable data in meticulous nature homokedastisitas, except for the regression table 4 and 5 heteroskedastisitas as $X \land 2$ count is greater than the value of alpha is in use. Here in view of the results of cointegration test.

Table 6 : Regrssion analisys for cointegration

Series: GDP GOV_EXPEND_ Lags interval (in first differences): 1 to 1

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None * At most 1 *	0.321119 0.259508	132.0480 57.68468	15.49471 3.841466	0.0001 0.0000
Lags interval (in fi	rst differences): 1	to 2		
Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None * At most 1 *	0.545375 0.253571	206.4208 55.85876	15.49471 3.841466	0.0001 0.0000

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None * At most 1 *	0.484592 0.198724	168.0256 42.09444	15.49471 3.841466	0.000
ags interval (in fi	rst differences): 1	to 4		
ags interval (in fi Hypothesized No. of CE(s)	rst differences): 1 Eigenvalue	to 4 Trace Statistic	0.05 Critical Value	Prob.**

Trace test indicates 2 cointegrating eqn(s) at the 0.05 level

Source : Procedd by author

The results in Table 6 show that the probability is very significant, so the data cointegrated between one variable to another variable at the alpha level of 5%.

IV. CONCLUSION

From the study done in getting the results that the model in real GDP in the variable data and Gov. Expenditure is homokedastisitas in the form of regression 1, 2 and 3 with regression 4 and 5 and Gov. GDP variable data Expenditure is heteroscedasticity. With cointegration test data in meticulous nature or mutually cointegrated

V. REFERENCES

- [1]. Bickel, P.J., 1978, Using residuals robustly I: Test for heteroscedasticity and nonlinearity, Annals of Statistics 6, 266-291.
- [2]. Breusch, T.S. and A.R. Pagan, 1979, A simple test for heteroscedasticity and random coefficient variation, Econometrica 47, 1287-1294.
- [3]. Godfrey, L.G., 1978. Testing for multiplicative heteroscedasticity, Journal of Econometrics 8, 227-236.
- [4]. Koenker, R., 1981, A note on studentizing a test for heteroscedasticity, Journal of Econometrics 17, 107-112.
- [5]. Koenker, R. and G.W. Bassett Jr., 1982, Robust tests for heteroscedasticity based on regression quantiles, Econometrica 50, 43-6 1.
- [6]. Theil, H., 1971, Principles of econometrics (Wiley, New York). White. H., 1980, A heteroscedasticity-consistent covariance matrix estimator and a direct test for heteroscedasticity, Econometrica 48, 817-838.
- [7]. http://stats.stackexchange.com/questions/24557/is nt-a-test-for-cointegration-the-same-as-testing-forheteroskedasticity-in-the