
IJSRST173390 | Received : 25 March 2017 | Accepted : 05 April 2017 | March-April - 2017 [(3)2: 299-303]

© 2017 IJSRST | Volume 3 | Issue 1 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X
Themed Section: Science and Technology

 299

Is Agile Project Management fit for small tech start-ups?
Priti Asthana

Project Manager, Pittsburgh, PA, USA

ABSTRACT

Like other professions, project management is evolving, with approaches to project management emerging. As

alternatives to the traditional project management methodology, agile software development life cycle models

provide innovative approaches to software development. Agile approaches are incremental in nature, with a primary

focus on the deliverables of the iterations. These approaches have proven effective in highly complex projects,

characterized by high uncertainties and large enterprises have adopted them, with considerable success. While the

use of use of agile approaches to project management has brought in large organizations, their applicability in small

startups is questionable. This is largely due to the differences between large and small enterprises. Small scale

startups have limited funding, limited number of developers and are constantly faced with the constraints of time

and cost and may not be able to use agile approaches with ease. Through a critical examination of the benefits and

disadvantages of agile approaches to software development, particularly Scrum and Extreme Programming, this

paper explores the possibility of extending agile approaches to small startups. The paper concludes that agile

approaches to project managers are not fit for small tech startups.

Keywords: Agile methodology, Scrum, Extreme Programming, Project Management

I. INTRODUCTION

Agile approaches to project management have become

popular in the Information Systems (IS) today. Agile

methods are an alternative to the old-style software

development approaches such as the waterfall model.

The wide adoption of agile approaches to software

development is attributable to their recognition of the

interaction of people and development team as the main

factor influencing project success, combined with an

intense emphasis on efficiency and maneuverability

(Cockburn & Highsmith, 2001).

Central to agile methodology is the use of incremental

and iterative development process (Yau & Murphy,

2013). This is illustrated in figure 1. The aim of agile

methodology is to plan out and deliver small portions of

the project at a time rather than defining and

documenting the whole project during the planning

phase like the waterfall SDLC. However, agile

methodology will follow similar phases to waterfall

model but will have loops between the phases.

According to Yau and Murphy (2013), agile

development process begins with the basic set of

deliverables, followed by planning, implementation and

testing of other components in the subsequent iterations,

as illustrated in figure 2.

Figure 1: Iterative incremental software development

life cycle. Retrieved from Satzinger, Jackson, and Burd

(2016).

Figure 2: Iterations in agile project management life

cycle. Retrieved from Wysocki (2009).

Figure 2 shows the iterations of the project. Each phase

in figure 1 is characterized by iterations illustrated in

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

300

figure 2. As such, the focus in agile software

development is in short deliverables that are tested

before proceeding to the next step rather than testing the

products at the end of the project. This practice helps to

keep bugs and code errors minimal throughout the

project life cycle. Agile methodology has proven to be

very useful in complex projects surrounded by

significantly high levels of uncertainties, and has been

widely adopted in big organizations. The current paper

discusses agile approaches, mainly scrum and extreme

programming, and critically assesses the possibility of

effective applicability of agile methodologies in small

enterprises.

II. METHODS AND MATERIAL

A. Principles of agile project management

approaches

Agile approaches to software development are built on

twelve principles. These include:

1. Satisfaction of client through early and incremental

delivery of high-quality software. This is achieved

through proper contractual relationship between the

development team and the client, and incremental

iterations, where client can use some deliverables of

the project at the end of early iterations (Stare,

2013). As such, successive iterations are considered

to add value to the software, which encourages

clients to prolong the project. However, this is

possible in certain project, especially those

involving high level of uncertainties.

2. Harness change even in late development to increase

customer’s competitiveness. Agile methodologies

allow changes to project scope at any stage of the

project life cycle. This feature is beneficial

especially when the project is complex, making

identification and defining all project risks

impractical before its initiation.

3. Incremental development of the software. This

principle requires that the project team delivers

working software at short intervals.

4. Collaboration of the project team and the client

throughout the project life cycle. Engagement of

customers to the software development is to ensure

that the developers clearly understand the

requirements of the product as well as clear

communication of changes during the software

development.

5. Offer support and provide a conducive environment

for the developers. This principle relates to the

motivational theory.

6. The most effective method of communicating within

a development team is face-to-face communication.

This principle requires project team members to

have strong interpersonal verbal communication

skills.

7. Functional software is the main measure of progress.

Based on this principle, agile approaches focuses on

deliverables of the iteration. This helps the

developers to avoid delivering a non-functional

product at the end, which is the greatest risk in

software development.

8. Agile methodologies promote sustainable

development.

9. Continuous focus on technical excellence and

excellent software design enhances agility. This

means that agility demands developers with high

technical know-how to allow agile thinking (Stare,

2013).

10. Simplicity in planning the iterations. This principle

is made to ensure efficient achievement of the

iteration goals.

11. The best system architectures and designs develop

from self-organizing teams. This principle suggests

that development team is able to organize their work

without the intervention of the project manager. In

other words, autonomy of the development team

may lead to excellent job.

12. Regular review of the software improves the

effectiveness of the team. This principle requires the

developers to review the software at intervals so as

to adjust its work accordingly.

B. Agile project management approaches

The agile software development manifesto consists of

several methodologies to agile project management.

Some agile software development approaches include

SCRUM, Extreme Programming, DSDM, Crystal,

Feature-Driven Development, Adaptive Software

Development, and Pragmatic Programming (Stare,

2013). This paper will focus on SCRUM and Extreme

Programming approaches.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

301

SCRUM

Since its introduction in 1996, scrum has become one of

the widely used agile approaches to software

development. Scrum is inspired by empirical inspect and

adapt feedback loops to address project complexity and

unforeseeable risks. To achieve this, scrum follows

iterative and incremental product development

framework. In this approach, the software development

process is divided into short iterations called sprints.

 The development process involves three stages; pre-

sprint planning, sprint and post-sprint meeting (Yau &

Murphy, 2013). During the pre-sprint planning, the

project team identifies and selects features and

functionalities from a backlog. Also, planning and

prioritization of the collection features is done at this

stage. In the sprint stage, the development team selects

the features it wishes to work on and start the

development process. The project team holds a meeting

every morning before starting the work to ensure

effective communication between the development team

and the product manager. A sprint lasts between one to

six weeks (Yau & Murphy, 2013). Importantly, the

product is maintained in a shippable state throughout the

project lifecycle. In other words, the product is properly

integrated and tested throughout the project life cycle.

The product is reviewed after every sprint during the

post-sprint meetings.

Scrum roles

Scrum has three roles: scrum master, product owner and

development team. The scrum master serves as the

process owner and process manager. He or she ensures

that all project activities are understood and support the

team through facilitation and coaching. Therefore, the

core responsibility of the scrum master is to remove any

obstacle that may hinder the project team from achieving

its sprint goals (James, n.d). This makes achieving each

sprint deliverables realistic and visible to the product

owner.

Product owner is the custodian of the project

functionalities. He or she gives the requirements of the

product in line with the organization needs (James, n.d).

As such, the product owner is engaged with the

development team to continuously communicate the

needs of the product. Interestingly, it is sometimes

difficult to strike the right balance of product owner

involvement because this model encourages self-

organization of the team while demanding the presence

of the product owner so as to respond to arising

questions from the team.

The development team is the last role of scrum. Its

responsibility is to transform product requirements into

deliverables that build potentially releasable product.

Usually, the development team is a small (3 to 9

members), self-organized and cross-functional unit

which jointly accounts for its work. For software

development projects, a typical team will include

software engineers, architects, systems analyst,

programmers, quality assurance expert and testers

(James, n.d).

C. Applicability of Scrum in small enterprises

The roles and processes of Scrum may have several

benefits to small enterprises. First, the daily meetings

can improve communication between the project

manager and the development team members (Yau &

Murphy, 2013). Effective communication between the

project team members and project master may decrease

time and cost due to possible communications.

Additionally, effective communication may result in

high-quality product since excellent software can be

designed only when each member of the development

team understands the overall scope of the project and

how other members are implementing certain parts (Yau

& Murphy, 2013). Given that project scope in small

startups keep on changing than in large enterprises (Yau

& Murphy, 2013), changes to the software structure

should be well communicated to achieve high-quality

software.

The pre-sprint planning, on the other hand, helps project

team to narrow down their activity list and concentrate

on the immediate goals. This feature is essential to small

enterprises because the end product is often not

completely defined; thus, it is very easy for the

development team to get trapped in the development of

too many features rather than focusing on the critical

features (Yau & Murphy, 2013). By dividing the tasks

into sprints, the development team can focus on iteration

goals and deliver main features step-wisely.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

302

III. RESULTS AND DISCUSSION

A. Extreme Programming

Extreme Programming is the other widely used agile

software development approach. Extreme Programming

is based on dynamism of project requirements, short

development cycles (Yau & Murphy, 2013), virtual

teams, changing technologies and collaborative

participation of all stakeholders to project development

(Thomsett, 2002). According to Thomsett (2002), the

relationship between the product owner and the project

team is critical project success using this approach.

Extreme Programming follows a test-driven

development process and emphasizes that the

programmers write acceptance test for the code before

implementing the features, whose benefits in software

development cannot be underestimated. Writing the test

cases before implementing features helps to determine if

the features fulfill the specifications as defined before

project initiation (Yau & Murphy, 2013). Again, test-

driven development helps to reduce bugs and code

errors. Further, writing test cases before implementing

the features helps to easily determine if changing parts

of the code will affect other sections by simply running

the test suite. Overall, Extreme Programming increases

the quality of the product and decreases the time and

cost associated with debugging at the end of the project.

B. Applicability of Extreme Programming in small

enterprises

Despite Extreme Programming promising to yield high-

quality product, it has limited applicability in small

enterprises for several reasons. First, small scale

enterprises have limited number of software developers.

Notably, developers in small enterprises and small

startups are constantly changed (Yau & Murphy, 2013).

As such, it is not worth spending much time in writing

comprehensive test cases for all features before

implementation. It is possible that the client may change

their requirements before writing the test cases is

complete, rendering such tests useless.

Second, it is very common for small startups to ask for a

few features as prototypes to test some ideas so as to

make their final decisions. In this scenario, it is not

reasonable to write all the test cases. It is more

meaningful to implement such prototypes fast so as to

speed up the decision-making process (Yau & Murphy,

2013). As such, the use of Extreme Programming in

small startups is limited.

Third, Extreme Programming is limited to small startups

due to shortage of funds. Due to shortage of funding,

most small scale enterprises will focus on minimal

viable product rather than the quality of the product

(Yau & Murphy, 2013). All they may need is at least

functional product to present to investors. In case an

enterprise decided to fund Extreme Programming and a

close competitor released a similar product, much of its

product may not help much, translating to loss of its

money value (Yau & Murphy, 2013).

The other aspect that limits the applicability of Extreme

Programming is its focus on pair program, which

requires two programmers to write code together on the

same computer (Yau & Murphy, 2013). Pair

programming is used to writing better code. The idea

behind pair programming is that when two developers

are combined, they are likely to share knowledge and

produce high quality code besides collective ownership

of the code. The programmers are more likely to

overthink a simple problem; leading to high quality code

than if they were alone, which is critical in big

companies. Small startups may not reap the benefits of

pair programming. First, small enterprises have a limited

number of developers. Secondly, small startups are

significantly challenged by constraints of time and cost;

thus, improving the quality by doubling the cost (hiring

of a second developer) could be impossible for small

enterprises. Again, the small number of programmers

dictates that each developer is assigned to a particular

area, making it impossible to enjoy the benefits of pair

programing.

IV. CONCLUSION

Agile approaches to project management offer

alternatives to the traditional software development

approaches such as the waterfall model. Agile

approaches divide project activities into iterations, with

a primary focus on incremental delivery of the product.

Scrum and Extreme Programming are typical examples

of agile approaches to project management. While agile

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

303

approaches to project management have become very

popular in the IS field, their applicability in small

startups is limited. Small startups are faced with cost and

time constraints, unable to manage the costs associated

with agile methodologies. Again, the requirements of

small startups often change constantly and may be costly

if Extreme project management approach used. If a

customer changes a mind before the test cases are over,

such test cases become useless. Further, small startups

have a limited number of developers, making it

impractical to implement pair programing emphasized

by Extreme Programing approaches.

V. REFERENCES

[1]. Cockburn, A. and Highsmith, J. (2001). Agile

Software Development joins the “would-be”

crowd. Cutter IT Journal. 34(9), 122 James, M.

Scrum Methodology: An Empirical Framework

for Learning (Not a Methodology).

[2]. Satzinger, J., Jackson, R., & Burd, S. (2016).

Systems analysis and design in a changing

world. Boston: Cengage Learning.

[3]. Stare, A. (2013). Agile project management – a

future approach to the management of projects?

Dynamic Relationships Management Journal,

2(1), 43-53.

[4]. Thomsett, R. (2002). Radical Project

Management. Upper Saddle River (NJ): Prentice

Hall PTR

[5]. Wysocki, R. (2009). Effective project

management: traditional, agile, extreme (5th

ed.). Indianapolis: Wiley Publishing.

[6]. Yau, A., and Murphy, C. (2013). Is Rigorous

Agile Methodology the Best Development

Strategy for Small Scale Tech Startups?

