Heart Disease Prediction using Machine Learning Techniques

Authors

  • Ramesh Ponnala  Assistant Professor, Department of MCA, Chaitanya Bharathi Institute of Technology (A), Gandipet, Hyderabad, Telangana State, India
  • K. Sai Sowjanya  MCA Scholar, Chaitanya Bharathi Institute of Technology (A), Gandipet, Hyderabad, Telangana State, India

DOI:

https://doi.org/10.32628/IJSRST2183218

Keywords:

Cardiovascular Disease (CVD), Heart disease prediction, Machine learning, Hybrid ML Techniques, Classification, Prediction

Abstract

Prediction of Cardiovascular ailment is an important task inside the vicinity of clinical facts evaluation. Machine learning knowledge of has been proven to be effective in helping in making selections and predicting from the huge amount of facts produced by using the healthcare enterprise. on this paper, we advocate a unique technique that pursuits via finding good sized functions by means of applying ML strategies ensuing in improving the accuracy inside the prediction of heart ailment. The severity of the heart disease is classified primarily based on diverse methods like KNN, choice timber and so on. The prediction version is added with special combos of capabilities and several known classification techniques. We produce a stronger performance level with an accuracy level of a 100% through the prediction version for heart ailment with the Hybrid Random forest area with a linear model (HRFLM).

References

  1. Senthilkumar Mohan 1, Chandrasegar Thirumalai1, and Gautam Srivastava, “Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques”, in IEEE Access, Special Section on Smart Caching, Communications, Computing and Cybersecurity for Information-Centric Internet of Things, Volume 7 June 2019, pp. 81542-81554
  2. A. S. Abdullah and R. R. Rajalaxmi, ‘‘A data mining model for predicting the coronary heart disease using random forest classifier,’’ in Proc. Int. Conf. Recent Trends Comput. Methods, Commun. Controls, Apr. 2012, pp. 22–25.
  3. M. Durairaj and V. Revathi, ``Prediction of heart disease using back propagationMLPalgorithm,''Int. J. Sci. Technol. Res., vol. 4, no. 8, pp. 235_239,2015.
  4. A. Gavhane, G. Kokkula, I. Pandya, and K. Devadkar, ``Prediction of heart disease using machine learning,'' in Proc. 2nd Int. Conf. Electron. Commun. Aerosp. Technol. (ICECA), Mar. 2018, pp. 1275_1278.
  5. A. H. Alkeshuosh, M. Z. Moghadam, I. Al Mansoori, and M. Abdar, ‘‘Using PSO algorithm for producing best rules in diagnosis of heart disease,’’ in Proc. Int. Conf. Comput. Appl. (ICCA), Sep. 2017, pp. 306– 311. [3] N. Al-milli, ‘‘Backpropogation neural network for prediction of heart disease,’’ J. Theor. Appl.Inf. Technol., vol. 56, no. 1, pp. 131–135, 2013.
  6. C. A. Devi, S. P. Rajamhoana, K. Umamaheswari, R. Kiruba, K. Karunya, and R. Deepika, ‘‘Analysis of neural networks based heart disease prediction system,’’ in Proc. 11th Int. Conf. Hum. Syst. Interact. (HSI), Gdansk, Poland, Jul. 2018, pp. 233–239.
  7. P. K. Anooj, ‘‘Clinical decision support system: Risk level prediction of heart disease using weighted fuzzy rules’. KingSaudUniv. -Comput.Inf.Sci., vol.24, no.1, pp.27–40, Jan.2012.doi: 10.1016/j.jksuci.2011.09.002.
  8. L. Baccour, ‘‘Amended fused TOPSIS-VIKOR for classification (ATOVIC) applied to some UCI data sets,’’ Expert Syst. Appl., vol. 99, pp. 115–125, Jun. 2018. doi: 10.1016/j.eswa.2018.01.025.
  9. C.-A. Cheng and H.-W. Chiu, ‘‘An artificial neural network model for the evaluation of carotid artery stenting prognosis using a national-wide database,’’ in Proc. 39th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2017, pp. 2566–2569.
  10. H. A. Esfahani and M. Ghazanfari, ‘‘Cardiovascular disease detection using a new ensemble classifier,’’ in Proc. IEEE 4th Int. Conf. Knowl. Based Eng. Innov. (KBEI), Dec. 2017, pp. 1011–1014.
  11. F. Dammak, L. Baccour, and A.M. Alimi, ‘‘The impact of criterion weights techniques in TOPSIS method of multi-criteria decision making in crisp and intuitionistic fuzzy domains,’’ in Proc. IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE), vol. 9, Aug. 2015, pp. 1–8.
  12. T. Mahboob, R. Irfan, and B. Ghaffar, ‘‘Evaluating ensemble prediction of coronary heart disease using receiver operating characteristics,’’ in Proc. Internet Technol. Appl. (ITA), Sep. 2017, pp. 110–115.
  13. Meiliana, S. Karim, H. L. H. S. Warnars, F. L. Gaol, E. Abdurachman, and B. Soewito, ―Software metrics for fault prediction using machine learning approaches: A literature review with PROMISE repository dataset,‖ in 2017 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom), 2017, pp. 19–23. doi:10.1109/CYBERNETICSCOM.2017. 8311708
  14. Ramesh Ponnala, Dr. CRK Reddy, “Software Defect Prediction using Machine Learning Algorithms :Current State of the Art”, Solid State Technology, Volume 64 Issue 2 2021

Downloads

Published

2021-06-30

Issue

Section

Research Articles

How to Cite

[1]
Ramesh Ponnala, K. Sai Sowjanya "Heart Disease Prediction using Machine Learning Techniques" International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 8, Issue 4, pp.42-47, July-August-2021. Available at doi : https://doi.org/10.32628/IJSRST2183218