Effect of Tribological Properties on Boron Carbide and CNT Reinforced Copper based Composites
DOI:
https://doi.org/10.32628/IJSRST218325Keywords:
Boron Carbide(B4C), Multi-walled Carbon-Nano tube (MWCNT), Wear and Corrosion RateAbstract
The study focuses on the influence and contribution of multi-walled Carbon-Nano tube (MWCNT) and boron carbide (B4C) to the tribological properties of copper matrix composites. The Samples are prepared using ultrasonic assisted stir casting for different weight fractions. The tribological properties like wear and corrosion studies been carried out according to ASTM standards. Wear rate increased with the increase in speed and load for every combination of the composite. However, with CNT being the main reinforcement with addition of CNT wear rate has reduced marginally. Addition of Boron Carbide also to some extent decreased the wear rate but CNT plays a major role in reducing the wear rate. Corrosion studies of the composite materials is carried out by Weight loss corrosion techniques, it is clearly evident from the critical analysis of the results that with the addition of reinforcements to the composite material, the corrosion rate in weight loss corrosion technique decreases drastically with the duration of time, this is due to the formation of a passive oxide layer on the composite specimen.
References
- Wang, X.; Li, Qunqing; Xie, Jing; Jin, Zhong; Wang, Jinyong; Li, Yan; Jiang, Kaili; Fan, Shoushan (2009). "Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates". Nano Letters. 9 (9): 3137–3141. Bibcode: 2009NanoL...9.3137W. CiteSeerX 10.1.1.454.2744, doi: 10.1021/nl901260b. PMID 19650638.
- Gullapalli, S.; Wong, M.S. (2011). "Nanotechnology: A Guide to Nano-Objects" (PDF). Chemical Engineering Progress. 107 (5): 28–32.
- Mintmire, J.W.; Dunlap, B.I.; White, C.T. (1992). "Are Fullerene Tubules Metallic?” Phys. Rev. Lett. 68 (5): 631–634. Bibcode: 1992PhRvL. 68.631 M. doi:10.1103/PhysRevLett.68.631. PMID 10045950.
- Dekker, C. (1999). "Carbon nanotubes as molecular quantum wires". Physics Today. 52 (5): 22–28. Bibcode: 1999 PhT.52e.22D. doi:10.1063/1.882658.
- Martel, R.; Derycke, V.; Lavoie, C.; Appenzeller, J.; Chan, K.; Tersoff, J.; Avouris, Ph. (2001). "Ambipolar Electrical Transport in Semiconducting Single-Wall Carbon Nanotubes". Phys. Rev. Lett. 87 (25): 256805. Bibcode: 2001PhRvL.87y6805M. doi:10.1103/PhysRevLett.87.256805. PMID 11736597.
- Gray, Theodore (2012-04-03). The Elements: A Visual Exploration of Every Known Atom in the Universe. Black Dog & Leventhal Publishers. ISBN 9781579128951.
- Ridgway, Ramond R "Boron Carbide", European Patent CA339873 (A), publication date: 1934-03-06.
- Balakrishnarajan, Musiri M.; Pancharatna, Pattath D.; Hoffmann, Roald (2007). "Structure and bonding in boron carbide: The invincibility of imperfections". New J. Chem. 31 (4): 473. doi:10.1039/b618493f.
- Zhang FX, Xu FF, Mori T, Liu QL, Sato A, Tanaka T (2001). "Crystal structure of new rare-earth boron-rich solids: REB28.5C4". J. Alloys Compd. 329: 168–172. doi:10.1016/S0925-8388(01)01581-X.
- Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 149. ISBN 0-08-037941-9.
- Domnich, Vladislav; Reynaud, Sara; Haber, Richard A.; Chhowalla, Manish (2011). "Boron Carbide: Structure, Properties, and Stability under Stress" (PDF). J. Am. Ceram. Soc. 94 (11): 3605–3628. doi:10.1111/j.1551-2916.2011.04865.x. Retrieved 23 July 2015.
- Bhaskar Chandra Kandpal, 2Jatinder Kumar, 3Hari Singh, “Production Technologies of Metal Matrix Composite: A Review”IJRMET Vol. 4, Issue 2, Spl - 2 May - October 2014.
- Ektarawong, A.; Simak, S. I.; Hultman, L.; Birch, J.; Alling, B. (2014). "First-principles study of configurational disorder in B4C using a superatom-special quasi-random structure method". Phys. Rev. B. 90 (2): 024204. arXiv:1508.07786 , Bibcode:2014PhRvB.90b4204E. doi:10.1103/PhysRevB.90.024204.
- Ektarawong, A.; Simak, S. I.; Hultman, L.; Birch, J.; Alling, B. (2015). "Configurational order-disorder induced metal-nonmetal transition in B13C2 studied with first-principles superatom-special quasirandom structure method". Phys. Rev. B. 92: 014202. arXiv:1508.07848 Freely accessible. Bibcode: 2015PhRvB.92a4202E. doi:10.1103/PhysRevB.92.014202.
- Sairam, K.; Sonber, J.K.; Murthy, T.S.R.Ch.; Subramanian, C.; Hubli, R.C.; Suri, A.K. (2012). "Development of B4C-HfB2 composites by reaction hot pressing". Int.J. Ref. Met. Hard Mater. 35: 32–40. doi:10.1016/j.ijrmhm.2012.03.004.
- Solozhenko, V. L.; Kurakevych, Oleksandr O.; Le Godec, Yann; Mezouar, Mohamed; Mezouar, Mohamed (2009). "Ultimate Metastable Solubility of Boron in Diamond: Synthesis of Superhard Diamondlike BC5". Phys. Rev. Lett. 102 (1): 015506.
- M. S. Nagorka, C. G. Levi, G. E. Lucas and S. D. Ridder: Mater. Sci. Eng. A 104 (1991) 277–289.
- M.K. Surappa, P. K. Rohatgi, Preparation and properties of cast aluminium-ceramic particle composites, Journal of materials science, 16(1981), p 983-993.
- R. Zitoune, M. El Mansori, K. Vijayan, Tribo-functional design of double cone drill implications in tool wear during drilling of copper mesh/CFRP/woven ply, Wear, 302 (1–2) (2013), pp. 1560-1567.
- S.F. Moustafa, A. Torres-Islas, S. Serna, M. Acosta-Flores, R.A. Rodriguez-Diaz, J. Colin, Corrosion, electrical and mechanical performance of copper matrix composites produced by mechanical alloying and consolidation, Int. J. Electrochem. Sci., 10 (2015), pp. 1728-1741.
- Poulami Majietal, N. Ekere, C. Best, R. Bhatti, Investigation of thermal management materials for automotive electronic control units, Appl. Therm. Eng., 31 (2011), pp. 355-362.
- Anish Upadhyaya, A. Kumar, P.R. Sengupta, P.K. Dutta, R.B. Mathur, Improving the mechanical and thermal properties of semi-coke based carbon/copper composites reinforced using carbon nanotubes, J. Adv. Mater. Lett., 5 (5) (2014), pp. 265-271.
- Kovalchenko, P. Ozga, W. Maziarz, J. Pstrus, B. Kania, P. Bobrowski, et al., Microstructure and properties of bulk copper matrix composites strengthened with various kinds of CNT nanoplatelets, Mater. Sci. Eng., A, 628 (2015), pp. 124-134.
- Kime, T. Yener, I. Altinsoy, M. Ipek, S. Zeytin, C. Bindal, The effect of sintering temperature on some properties of Cu–SiC composite, J. Alloys Compd., 509 (2011), pp. 6036-6042.
- F.Wan, M. Abdel hameed and A. Fathy, “Preparation and Characteristics of Cu-Al2O3nanocomposite”, Journal on Mechanical Design and Production, Vol. 1 Issue 25-33, 20 November-2011.
- Bhaskar Chandra Kandpal, Jatinder Kumar, Hari Singh, “Production Technologies of Metal Matrix Composite: A Review ”, IJRMET Vol. 4, Issue 2, Spl - 2 May - October 2014
- Prabhakar Rao, Jayashree PK, Gowri Shankar MC, Kini A, Sharma SS, Shetty R. “Review on Effect of copper on Stir Cast Aluminium Metal Matrix Composites”. Inter-national Journal of Current engineering and Technology.
- F Shehata, Al-Hajri M., Petraroli M., Hotton B., Lam P.C., “Influence of silicon carbide particulate reinforcement on quasi static and cyclic fatigue fracture behavior of 6061 Aluminium alloy composites” Materials Science and Engineering A325 (2002) 202-214.
- Kenneth Kanayo Alaneme, Development of high strength magnesium based composites using elemental nickel particulates as reinforcement, Journal of Materials Science, 37, pp 24672474, 2002.
- Kapoor, R., Vecchio, K.S., “Deformation behavior and failure mechanisms in particulate reinforced 6061 Al metal matrix composites, Materials Science and Engineering A202 (1995) 63-75.
- N Sata et al, Materials Science & Engineering A: Structural Materials; properties, Microstructure and processing, Vol.A197, N 1, Jun 30 1995, pp 11-18.
- Alexey Mosh Kovich, W.R. Amitusko, Modelling of Cu-Al2O3 metal matrix composite prepared by powder metallurgy route, Int. J. Eng. Adv. Technol. 3, (2013) 330–332.
- M. Han, R. Othman, Z. Hussain, Mechanical alloying and sintering of nanostructured tungsten carbide-reinforced copper composite and its characterization, Mater. Des. 32 (2011) 3293–3298.
- Q. Zhank, X. He, S. Ren, L. Zhang, M. Wu, C. Guo, W. Cui, X. Qu, Preparation of copper–diamond composites with chromium carbide coatings on diamond particles for heat sink applications, Appl. Therm. Eng. 60 (2013) 423–429.
- L. Li, X.H. Qu, X.B. He, B.H. Duan, S.B. Ren, M.L. Qin, Thermo-physical and mechanical properties of high volume fraction SiCp/Cu composites prepared by pressureless infiltration, Mater. Sci. Eng., A 489 (2008) 285–293.
- Gongjun, L. Liu, Friction and wear properties of copper based composites reinforced with micro and nano-sized Al2O3 particles, 8th Int. conf. Tribol., 30th Oct-1st Nov. 2014, Sinaia, Romania, 2014, pp. 357–358.
- Jena, Yaximo, Modeling of burr size in drilling of aluminum silicon carbide composites using response surface methodology, Eng. Sci. Technol. 19 (2016) 1199–1205.
- Entezarian L, M Xiu Development of empirical relationships for prediction of mechanical and wear properties of AA6082 aluminum matrix composites produced using friction stir processing, Eng. Sci. Technol. 19 (2016) 1132–1144.
- Yohsimo, Z. Abdel-Hamid, A.M. Abd-Elahi, Copper matrix SiC and Al2O3 particulate composites by powder metallurgy technique, Mater. Lett. 53 (2002) 244–249.
- J. Fathy, S. Emmer, J. Bielek, Thermal conductivity of Cu–graphite composites, Int. J. Therm. Sci. 90 (2015) 298–302.
- F. Tang, J. Ying, Y. Wang, S. Du, Z. Liu, Q. Huang, Effects of CNT content on the microstructure and properties of copper matrix composites, Carbon 96 (2016) 836–842.
- W. Tjong, L. Zhou, K. Peng, J. Zhu, L. Wan, Effect of tungsten addition on thermal conductivity of graphite/copper composites, Compos. Part B Eng. 55 (2013) 1–4.
- [H. Yin, M. Chug, H. Zhang, A. Tang, B. Ren, X. He, Microstructure and thermal properties of copper matrix composites reinforced by chromium-coated discontinuous graphite fibers, Appl. Therm. Eng. 73 (2014) 739–744.
- D.D. Zhou, Y.F. Kwon, Z.J. Lu, Microstructural characteristics and formation mechanism of direct laser-sintered Cu-based alloys reinforced with Ni particles, Mater. Des. 30 (2009) 2099–2107.
- W. Manchang, M. Heilmaier, L. Schultz, High-strength pearlitic steel–copper composite wires for conductors in pulsed high-field magnets, Mater. Sci. Eng., A 303 (1–2) (2001) 127–133.
- W. Grünberger, M. Heilmaier, L. Schultz, High-strength, high-nitrogen stainless steel–copper composite wires for conductors in pulsed high-field magnets, Mater. Lett. 52 (3) (2002) 154–A.S.
- Hamada, A. Khosravifard, A.P. Kisko, E.A. Ahmed, D.A. Porter, High temperature deformation behavior of a stainless steel fiber-reinforced copper matrix composite, Mater. Sci. Eng., A (2016), http://dx.doi.org/10.1016/j.msea.2016.03.084.
- C. Saldana, S. Swaminathan, T.L. Brown, W. Moscoso, J.B. Mann, W.D. Compton, S. Chandrasekar, Unusual applications of machining: controlled nanostructuring of materials and surfaces, ASME J. Manuf. Sci. Eng. 132–3 (2010) 030908.
- T.L. Brown, S. Swaminathan, S. Chandrasekar, W.D. Compton, A.H. King, K.P. Trumble, Low-cost manufacturing process for nanostructured metals and alloys, J. Mater. Res. 17 (10) (2002) 2484–2488.
- P. Iglesias, A.E. Jiménez, M.D. Bermúdez, B.C. Rao, S. Chandrasekar, Steel machining chips as reinforcements to improve sliding wear resistance of metal alloys: study of a model Zn-based alloy system, Tribol. Int. 65 (2013) 215–227.
- K.K. Alaneme, A.O. Aluko, Production and age-hardening behaviour of Borax pre-mixed SiC reinforced Al–Mg–Si alloy composites developed by double stir casting technique, West Indian J. Eng. 34 (1/2) (2012) 80–85.
- K.K. Alaneme, T.M. Adewale, Influence of rice husk ash–silicon carbide weight ratios on the mechanical behaviour of Al–Mg–Si alloy matrix hybrid composites, Tribol. Ind. 35 (2) (2013) 163–172.
- T.K. Vyas, A. Pandey, A review on investigation of copper matrix composite by using stir casting method, Indian J. Appl. Res. 5 (1) (2015) 75–77.
- K.K. Alaneme, Influence of thermo-mechanical treatment on the tensile behaviour and CNT evaluated fracture toughness of borax premixed silicon carbide reinforced aluminium (6063) matrix composites, Int. J. Mater. Mech. Eng. 7 (1) (2012) 96–100.
- K.K. Alaneme, K.O. Sanusi, Mechanical and wear behaviour of rice husk ash–alumina–graphite hybrid reinforced aluminium based composites, Eng. Sci. Technol. Int. J. 18 (3) (2015) 416–422.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRST

This work is licensed under a Creative Commons Attribution 4.0 International License.