Gas Sensing Properties of Graphene-Rb-Based Sensor for Liquefied Petroleum Gas and Hydrogen

Authors

  • Shivani A. Singh  Nano Material Application Lab., Department of Physics, Institute of Science, Madam Kama Road, Fort, Mumbai, Maharashtra, India
  • Pravin. S. More  Nano Material Application Lab., Department of Physics, Institute of Science, Madam Kama Road, Fort, Mumbai, Maharashtra, India

DOI:

https://doi.org//10.32628/IJSRST218374

Keywords:

LPG Sensor; Hydrogen Sensor; Rb-modified Graphene; Sensitivity; Selectivity.

Abstract

Rb-modified graphene powder was prepared by the chemical route synthesis method in this paper. X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the composition of the crystalline phase and the morphology of the prepared gas-sensitive materials, respectively. In particular, the study focused on the sensing behaviours of Graphene-Rb-based sensor towards power transformer fault gases such as hydrogen and liquefied petroleum gas. The molar concentration (M) level of Rb additive was varied systematically from 0.5 M to 2.0 M. The highest value of sensitivity factor (SF) of ~ 200 for 1.0M Rb-modified graphene to LPG gas was obtained at considerably lower temperature of 390K and for Hydrogen gas the highest value of sensitivity factor (SF) of ~ 225 for 1.0M Rb-modified graphene at considerably lower temperature of 380K. The selectivity value is found to be maximum ~ 16 for 1.5M of Rb-modified graphene for LPG and ~ 32 for 2.0M of Rb-modified graphene for Hydrogen gas.

References

  1. Lincoln Vogel, F. (1977). The electrical conductivity of graphite intercalated with superacid fluorides: experiments with antimony pentafluoride. Journal of Materials Science, 12(5), 982-986.
  2. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). C60: Buckminsterfullerene. Nature, 318(6042), 162-163.
  3. Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56-58.
  4. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., & Firsov, A.A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666-669.
  5. Novoselov, A. K., Geim, S. V., Morozov, D., Jiang, M. I., Katsnelson, I.V., Grigorieva, S. V., Dubonos, S. V., & Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197-200.
  6. Zhang, Y., Tan, Y.W., Stormer, H.L., & Kim, P. (2005). Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 438(7065), 201-204.
  7. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 8(3), 902-907.
  8. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., & Geim, A. K. (2008). Fine Structure Constant Defines Visual Transparency of Graphene. Science, 320(5881), 1308.
  9. Li, X., Wang, X., Zhang, L., Lee, S., & Dai, H. (2008). Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science, 319(5867), 1229-1232.
  10. Ritter, K. A., & Lyding, J. W. (2009). The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater, 8(3), 235-242. 60 Nanocomposites - New Trends and Developments
  11. Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A. P., Saleh, M., Feng, X., Mullen, K., & Fasel, R. (2010). Atomically precise bottom- up fabrication of graphene nanoribbons. Nature, 466(7305), 470-473.
  12. Ansari, S., & Giannelis, E. P. (2009). Functionalized graphene sheet-Poly(vinylidene fluoride) conductive nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 47(9), 888-897.
  13. Ramanathan, T., Abdala, A. A., Stankovich, S., Dikin, D. A., Herrera, Alonso. M., Piner, R. D., Adamson, D. H., Schniepp, H. C., Chen, X., Ruoff, R. S., Nguyen, S. T., Aksay, I. A., Prud’Homme, R. K., & Brinson, L. C. (2008). Functionalized graphene sheets for polymer nanocomposites. Nat Nano, 3(6), 327-331.
  14. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286.
  15. Fan, H., Wang, L., Zhao, K., Li, N., Shi, Z., Ge, Z., & Jin, Z. (2010). Fabrication, Mechanical Properties, and Biocompatibility of Graphene-Reinforced Chitosan Composites. Biomacromolecules, 11(9), 2345-2351.
  16. Zhang, K., Zhang, L. L., Zhao, X. S., & Wu, J. (2010). Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chemistry of Materials. ; , 22(4), 1392-1401.
  17. Zhao, X., Zhang, Q., Chen, D., & Lu, P. (2010). Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites. Macromolecules, 43(5), 2357-2363.
  18. Kuila, T., Bose, S., Hong, C. E., Uddin, M. E., Khanra, P., Kim, N. H., & Lee, J. H. (2011). Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method. Carbon, 49(3), 1033-1037.
  19. Wu, J., Becerril, H. A., Bao, Z., Liu, Z., Chen, Y., & Peumans, P. (2008). Organic solar cells with solution-processed graphene transparent electrodes. Applied Physics Letters, 92(26), 263-302.
  20. Huang, J., Wang, X., de Mello, A. J., de Mello, J. C., & Bradley, D. D. C. (2007). Efficient flexible polymer light emitting diodes with conducting polymer anodes. Journal of Materials Chemistry, 17(33), 3551-3554.
  21. Park, H., Rowehl, J. A., Kim, K. K., Bulovic, V., & Kong, J. (2010). Doped graphene electrodes for organic solar cells. Nanotechnology, 21(505204).
  22. Li, D., Muller, M. B., Gilje, S., Kaner, R. B., & Wallace, G. G. (2008). Processable aqueous dispersions of graphene nanosheets. Nat Nano, 3(2), 101-105.
  23. Shan, C., Yang, H., Han, D., Zhang, Q., Ivaska, A., & Niu, L. (2009). Water-Soluble Graphene Covalently Functionalized by Biocompatible Poly-l-lysine. Langmuir, 25(20), 12030-12033.
  24. Si, Y., & Samulski, E. T. (2008). Synthesis of Water Soluble Graphene. Nano Letters, 8(6), 1679-1682.

Downloads

Published

2021-06-30

Issue

Section

Research Articles

How to Cite

[1]
Shivani A. Singh, Pravin. S. More, " Gas Sensing Properties of Graphene-Rb-Based Sensor for Liquefied Petroleum Gas and Hydrogen, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 8, Issue 3, pp.353-359, May-June-2021. Available at doi : https://doi.org/10.32628/IJSRST218374