Study of Three Different Operator Algebras and Some Contribution of Operator Algebra in Mathematics

Authors

  • Surendra Ray  Research Scholar, Department of Mathematics, B. R. A. Bihar University, Muzaffarpur, and Professor of Mathematics, Department of Mathematics, R. R. M. Campus, Janakpurdham, Nepal.
  • Chandra Deo Pathak  Research Scholar, Department of Mathematics, B. R. A. Bihar University, Muzaffarpur, and Professor of Mathematics, Department of Mathematics, R. R. M. Campus, Janakpurdham, Nepal.
  • Dr. Rajeshwar Prasad Yadav  Professor of Mathematics & Principal, R. L. S. Y. College, Betiah, B. R. A. Bihar University, Muzaffarpur, India

DOI:

https://doi.org/10.32628/IJSRST229483

Keywords:

Operator Algebras, Topology, Compact Operators, Vector- Space, Hilbert Spaces, Homomorphic, Functional Analysis.

Abstract

In this present paper, we studied about three different ways one may look at operator algebras and some classical applications of operator algebras in mathematics and mathematical physics. [1-2].

References

  1. P. Ara, F. Lled´o, and F. Perera, Basic definitions and results for operator algebras, in this volume.
  2. H. Baumg¨artel, Die darstellungstheoretischen Prinzipien der Quantenmechanik, Wiss. Z. Humboldt-Univ. Berlin, Math. Nat. R. XIII (1964), 881–892.
  3. H. Baumg¨artel, Operatoralgebraic Methods in Quantum Field Theory. A Series of Lectures, Akademie Verlag, Berlin, 1995.
  4. D. Buchholz and H. Grundling, The resolvent algebra: A new approach to canonical quantum systems, J. Funct. Anal. 254 (2008), 2725–2779.
  5. O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics 2, Springer Verlag, Berlin, 2002.
  6. A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.
  7. J. Dieudonn´e, History of Functional Analysis, North-Holland, Amsterdam, 1981.
  8. J. Dixmier, Von Neumann algebras, North Holland Publishing co., Amsterdam, 1981.
  9. J. Dixmier, C∗ –algebras, North Holland Publishing co., Amsterdam, 1977.
  10. S. Doplicher, R. Haag, and J.E. Roberts, Fields, observables and gauge transformations I, Commun. Math. Phys. 13 (1969), 1–23.
  11. S. Doplicher, R. Haag, and J.E. Roberts, Fields, observables and gauge transformations II, Commun. Math. Phys. 15 (1969), 173–200.
  12. Robert S. Doran (ed.), C ∗ -algebras: 1943–1993. A fifty year celebration, Contemporary Mathematics, vol. 167, Providence, RI, American Mathematical Society, 1994.
  13. N. Dunford and J.T. Schwartz, Linear Operators Part II: Spectral Theory, Interscience Publisher, New York, 1988.
  14. G.G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley Interscience, New York, 1972.
  15. I. Gelfand, Normierte Ringe, Rec. Math. [Mat. Sbornik] 9 (1941), 3–24.
  16. J.M. Gracia-Bond´ıa, J.C. V´arilly, and H. Figueroa, Elements of Noncommutative Geometry, Birkh¨auser Verlag, Boston, 2001.
  17. D. Guido, Modular Theory for the von Neumann algebras of local quantum physics, in this volume.
  18. R. Haag, Local Quantum Physics, Springer Verlag, Berlin, 1992.
  19. R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys. 5 (1964), 848–861.

Downloads

Published

2022-08-30

Issue

Section

Research Articles

How to Cite

[1]
Surendra Ray, Chandra Deo Pathak, Dr. Rajeshwar Prasad Yadav "Study of Three Different Operator Algebras and Some Contribution of Operator Algebra in Mathematics " International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 9, Issue 4, pp.499-505, July-August-2022. Available at doi : https://doi.org/10.32628/IJSRST229483