The Classification and Synthesis Methods of Nanomaterials

Authors

  • Dr. B. S. Surung  Department of Physics, Lalbahadur Shashtri Sr. College, Partur, Maharashtra, India
  • Dr. R. M. Lokhande  Department of Physics, DNCVPS Shirish Madhukarrao Chaudhari College, Jalgaon, Maharashtra, India
  • Mrs. M. R. Thokare  Department of Physics, J. E. S. College, Jalna, Maharashtra, India
  • Mr. R. D. Khalapure  Department of Chemistry, Lalbahadur Shashtri Sr. College, Partur, Maharashtra, India
  • Dr. B. S. Kharat  Department of Physics, Swami Vivekananda Mahavidyalaya, Mantha, Maharashtra, India
  • Dr. P. P. Pawar  Department of Physics, Dr. B.A.M.U. Aurangabad, Maharashtra, India

DOI:

https://doi.org//10.32628/IJSRST52310321

Keywords:

Nanoparticles, Ball Milling, Sol-Gel Method, Co-precipitation Method, CVD.

Abstract

Recently the more interesting and attracting point in research area is the synthesis and characterizations of nanomaterials because of nanotechnology field has contributed to the improvement and revolutionizing of different fields. The list of benefits and applications of nanotechnology is growing rapidly. Nanoparticles (NPs) are small particles that exist in an average size ranges between 1 and 100 nm that distinguish them from their parental bulky materials and make them ideal for diverse applications [1], [2] . Now a day’s nanoscale materials, with unique properties have been widely used in different fields such as energy, engineering, biomedical and environment applications. The NPs have become an area of intensive research in the recent past because of their unique and distinguished properties which make their potential application in various fields biomedicine, catalysis, agriculture, and environment [3], [4]. We go through the various research papers and discuss the synthesis of NPs with different methods by the various authors. There are many techniques and applications are reported in the last five years but here we strictly focused on the general synthetic approaches and applications of the nanomaterials which provide a general idea to the young researchers.

References

  1. Laconte, L., Nitin, N., and Bao, G. (2005). Magnetic Nanoparticle Probes. Mater. Today 8, 32–38. doi:10.1016/s1369-7021(05)00893-x.
  2. Cardoso, V. F., Francesko, A., Ribeiro, C., Bañobre-López, M., Martins, P., and Lanceros-Mendez, S. (2018). Advances in Magnetic Nanoparticles for Biomedical Applications. Adv. Healthc. Mater. 7, 1700845. doi:10.1002/adhm.201700845.
  3. Zhu, K., Ju, Y., Xu, J., Yang, Z., Gao, S., and Hou, Y. (2018). Magnetic Nanomaterials: Chemical Design, Synthesis, and Potential Applications. Acc. Chem. Res. 51, 404–413. doi:10.1021/acs.accounts.7b00407.
  4. Zhang, Q., Yang, X., and Guan, J. (2019). Applications of Magnetic Nanomaterials in Heterogeneous Catalysis. ACS Appl. Nano Mater. 2, 4681–4697. doi:10.1021/ acsanm.9b00976.
  5. S. Tabrez, J. Musarrat, A. A. Al-khedhairy, (2016). Colloids and surfaces B: biointerfaces countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status, Colloids Surf. B Biointerfaces 146, 70–83.
  6. M.D. Rao, P. Gautam, (2016). Synthesis and characterization of ZnO nanoflowers using chlamydomonas reinhardtii: a green approach, Environ. Prog. Sustain. Energy, 1–7.
  7. Das, P.; Sarmah, K.; Hussain, N.; Pratihar, S.; Das, S.; Bhattacharyya, P.; Patil, S.A.; Kim, H.S.; Iqbal, M.; Khazie, A.; Bhattacharyya, S.S. (2016). Novel synthesis of an iron oxalate capped iron oxide nanomaterial; a unique soil conditioner and slow release eco-friendly source of iron sustenance in plants. RSC Adv., 6, 103012- 25.
  8. [52] C. Sarkar, C. Ghosh, S. Roy, Nanotechnology, CRC Press, Boca Raton, 2018.
  9. C. Poole, F. Owens, Introduction to Nanotechnology, Wiley India, New Delhi, 2010.
  10. DeCastro, C. L., and Mitchell, B. S. (2002). Nanoparticles from Mechanical Attrition. in Synthesis, Functionalization, and Surface Treatment of Nanoparticles Editor Baraton, M. I. Valencia, CA: American Scientific Publishers, 5.
  11. Biehl, P., von der Lühe, M., Dutz, S., and Schacher, F. (2018). Synthesis, Characterization, and Applications of Magnetic Nanoparticles Featuring Polyzwitterionic Coatings. Polymers 10, 91. doi:10.3390/polym10010091.
  12. Kurland, H.-D., Grabow, J., Staupendahl, G., Andrä, W., Dutz, S., and Bellemann, M. E. (2007). Magnetic Iron Oxide Nanopowders Produced by CO2 Laser Evaporation. J. Magnetism Magn. Mater. 311, 73–77.
  13. C. Stötzel, H.-D. Kurland, J. Grabow, S. Dutz, E. Müller, M. Sierka, F.A. Müller, Cryst. Growth Des. 13 (2013). .Structure evolution of nanoparticulate Fe2O3, 4868-4876.
  14. Amendola, V., and Meneghetti, M. (2009). Laser Ablation Synthesis in Solution and Size Manipulation of noble Metal Nanoparticles. Phys. Chem. Chem. Phys. 11, 3805–3821.
  15. Jendrzej, S., Gökce, B., Epple, M., and Barcikowski, S. (2017). How Size Determines the Value of Gold: Economic Aspects of Wet Chemical and Laser-Based Metal Colloid Synthesis. Chem. Phys. Chem. 18, 1012–1019.
  16. Benjamin, J. S. (1970). Dispersion Strengthened Superalloys by Mechanical Alloying. Metallurgical Trans. 1, 2943–2951. doi:10.1007/BF03037835.
  17. Benjamin, J. S. (1970). Dispersion Strengthened Superalloys by Mechanical Alloying. Metallurgical Trans. 1, 2943–2951.
  18. Fecht, H. J., Hellstern, E., Fu, Z., and Johnson, W. L. (1990). Nanocrystalline Metals Prepared by High-Energy ball Milling. Mta 21, 2333–2337.
  19.  Mohamed, A. E.-M. A., and Mohamed, M. A. (2019). “Nanoparticles: Magnetism and Applications,” in Magnetic Nanostructures, Springer, 1–12.
  20. Song, K., Kim, W., Suh, C.-Y., Shin, D., Ko, K.-S., and Ha, K. (2013). Magnetic Iron Oxide Nanoparticles Prepared by Electrical Wire Explosion for Arsenic Removal. Powder Technol. 246, 572–574. doi:10.1016/j.powtec.2013.06.023.
  21.  Kotov, Y. A. (2003). Electric Explosion of Wires as a Method for Preparation of Nanopowders. J. Nanoparticle Res. 5, 539–550. doi:10.1023/b: nano.0000006069.45073.0b.
  22. Kawamura, G., Alvarez, S., Stewart, I. E., Catenacci, M., Chen, Z., and Ha, Y.-C. (2015). Production of Oxidation-Resistant Cu-Based Nanoparticles by Wire Explosion. Scientific Rep. 5, 1–8.
  23. Kotov, Y. A. (2003). Electric Explosion of Wires as a Method for Preparation of Nanopowders. J. Nanoparticle Res. 5, 539–550. doi:10.1023/b: nano.0000006069.45073.0b
  24. Arbab Ali1,2† , Tufail Shah3† , Rehmat Ullah4† , Pingfan Zhou1 , Manlin Guo1 , Muhammad Ovais 2 , Zhiqiang Tan5 * and YuKui Rui1 *(2021). Review on Recent Progress in Mangetic Nanoparticles: Synthesis, Characterization, and Diverse Application. Advances in Magnetic Nanoparticles. doi: 10.3389/fchem.2021.629054.
  25. Hao Shasha et al., Mater. Sci. Semicond. Process. 91 (2019) 181–187.
  26. Dr. B. S. Surung *1, Dr. R. M. Lokhande2, Mrs. M. R. Thokare3. (2023), Studies of Zinc Oxide Nanoparticle Synthesis Methods and Effect on its Structure, Characteristics and Morphology : A Review. International Journal of Scientific Research in Science and Technology. 655-63, doi : https://doi.org/10.32628/IJSRST2310182
  27. Hasany, S., Ahmed, I., Rajan, J., and Rehman, A. (2012). Systematic Review of the Preparation Techniques of Iron Oxide Magnetic Nanoparticles. Nanosci. Nanotechnol. 2, 148–158.
  28. Lu, A.-H., Salabas, E. L., and Schüth, F. (2007). Magnetic Nanoparticles: Synthesis, Protection, Fictionalization, and Application. Angew. Chem. Int. Ed. 46, 1222–1244.
  29. Duan, M., Shapter, J. G., Qi, W., Yang, S., and Gao, G. (2018). Recent Progress in Magnetic Nanoparticles: Synthesis, Properties, and Applications. Nanotechnology 29, 452001. doi:10.1088/1361-6528/aadcec.
  30. Sandeep Kumar, V. (2013). Magnetic Nanoparticles-Based Biomedical and Bioanalytical Applications. J. Nanomed. Nanotechol. 4, e130. doi:10.4172/ 2157-7439.1000e130.
  31. Chen, J. P., Sorensen, C. M., Klabunde, K. J., Hadjipanayis, G. C., Devlin, E., and Kostikas, A. (1996). Size-dependent Magnetic Properties ofMnFe2O4fine Particles Synthesized by Coprecipitation. Phys. Rev. B 54, 9288–9296. doi:10.1103/physrevb.54.9288.
  32. Chen, Q., Rondinone, A. J., C. Chakoumakos, B., and John Zhang, Z. (1999). Synthesis of Superparamagnetic MgFe2O4 Nanoparticles by Coprecipitation. J. Magnetism Magn. Mater. 194, 1–7. doi:10.1016/s0304-8853(98)00585-x.
  33. Mosayebi, J., Kiyasatfar, M., and Laurent, S. (2017). Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv. Healthc. Mater. 6, 1700306. doi:10.1002/adhm.201700306.
  34. Jiang, W., Yang, H. C., Yang, S. Y., Horng, H. E., Hung, J. C., Chen, Y. C., et al. (2004). Preparation and Properties of Superparamagnetic Nanoparticles with Narrow Size Distribution and Biocompatible. J. Magnetism Magn. Mater. 283, 210–214.
  35. Jiang, W., Yang, H. C., Yang, S. Y., Horng, H. E., Hung, J. C., Chen, Y. C., et al. (2004). Preparation and Properties of Superparamagnetic Nanoparticles with Narrow Size Distribution and Biocompatible. J. Magnetism Magn. Mater. 283, 210–214. doi:10.1016/j.jmmm.2004.05.022.
  36. Zhang, P., Zhang, Y., Gao, M., and Zhang, X. (2016). Dendrimer-assisted Hydrophilic Magnetic Nanoparticles as Sensitive Substrates for Rapid Recognition and Enhanced Isolation of Target Tumor Cells. Talanta 161, 925–931. doi:10.1016/j.talanta.2016.08.064.
  37. Wang, X., Zhuang, J., Peng, Q., and Li, Y. (2005). A General Strategy for Nanocrystal Synthesis. Nature 437, 121–124. doi:10.1038/nature03968.
  38. Li, G.-Y., Jiang, Y.-R., Huang, K.-L., Ding, P., and Chen, J. (2008). Preparation and Properties of Magnetic Fe3O4-Chitosan Nanoparticles. J. alloys Compd. 466, 451–456. doi:10.1016/j.jallcom.2007.11.100.
  39. Zahid, M., Nadeem, N., Hanif, M. A., Bhatti, I. A., Bhatti, H. N., and Mustafa, G. (2019). “Metal Ferrites and Their Graphene-Based Nanocomposites: Synthesis, Characterization, and Applications in Wastewater Treatment,” in Magnetic Nanostructures (Springer), 181–212.
  40. Effenberger, F. B., Couto, R. A., Kiyohara, P. K., Machado, G., Masunaga, S. H., Jardim, R. F., et al. (2017). Economically Attractive Route for the Preparation of High Quality Magnetic Nanoparticles by the thermal Decomposition of Iron(III) Acetylacetonate. Nanotechnology 28, 115603. doi:10.1088/1361- 6528/aa5ab0.
  41. Ren, B., Kandjani, A. E., Chen, M., Field, M. R., Oppedisano, D. K., Bhargava, S. K., et al. (2019). Preparation of Au Nanoparticles on a Magnetically Responsive Support via Pyrolysis of a Prussian Blue Composite. J. Colloid Interf. Sci. 540, 563–571. doi:10.1016/j.jcis.2019.01.027.
  42. Kudr, J., Haddad, Y., Richtera, L., Heger, Z., Cernak, M., Adam, V., et al. (2017). Magnetic Nanoparticles: From Design and Synthesis to Real World Applications. Nanomaterials 7, 243. doi:10.3390/nano7090243.
  43. Frey, N. A., Peng, S., Cheng, K., and Sun, S. (2009). Magnetic Nanoparticles: Synthesis, Functionalization, and Applications in Bioimaging and Magnetic Energy Storage. Chem. Soc. Rev. 38, 2532–2542. doi:10.1039/b815548h..
  44. Faraji, M., Yamini, Y., and Rezaee, M. (2010). Magnetic Nanoparticles: Synthesis, Stabilization, Functionalization, Characterization, and Applications. Jics 7, 1–37. doi:10.1007/bf03245856.
  45. Mosayebi, J., Kiyasatfar, M., and Laurent, S. (2017). Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv. Healthc. Mater. 6, 1700306. doi:10.1002/adhm.201700306.
  46. Lu, T., Wang, J., Yin, J., Wang, A., Wang, X., and Zhang, T. (2013). Surfactant Effects on the Microstructures of Fe3O4 Nanoparticles Synthesized by Microemulsion Method. Colloids Surf. A: Physicochemical Eng. Aspects 436, 675–683. doi:10.1016/j.colsurfa.2013.08.004.
  47. Okoli, C., Boutonnet, M., Mariey, L., Järås, S., and Rajarao, G. (2011). Application of Magnetic Iron Oxide Nanoparticles Prepared from Microemulsions for Protein Purification. J. Chem. Technol. Biotechnol. 86, 1386–1393. doi:10.1002/jctb.2704.
  48. Verma, R., Pathak, S., Srivastava, A. K., Prawer, S., and Tomljenovic-Hanic, S. (2021). ZnO Nanomaterials: Green Synthesis, Toxicity Evaluation and New Insights in Biomedical Applications. J. Alloys Comp. 876 160175. doi:10.1016/ j.jallcom.2021.160175.
  49. Komeili, A. (2012). Molecular Mechanisms of Compartmentalization and Biomineralization in Magnetotactic Bacteria. FEMS Microbiol. Rev. 36, 232–255. doi:10.1111/j.1574-6976.2011.00315.x.
  50. 8] J. Gardea-Torresdey, E. Gomez, J. Peralta-Videa, J. Parsons, H. Troiani, M. Jose Yacaman, Langmuir 19 (4) (2003) 1357–1361.
  51. M. Molcan, H. Gojzewski, A. Skumiel, S. Dutz, J. Kovac, M. Kubovcikova, P. Kopcansky, L. Vekas, M. Timko, J. Phys. D: Appl. Phys. 49 (36) (2016) 365002.
  52. M. Timko, M. Molcan, A. Hashim, A. Skumiel, M. Muller, H. Gojzewski, A. Jozefczak, J. Kovac, M. Rajnak, M. Makowski, P. Kopcansky, IEEE Trans. Magn. 49 (1) (2013) 250–254.
  53. Gul, S., Khan, S. B., Rehman, I. U., Khan, M. A., and Khan, M. (2019). A Comprehensive Review of Magnetic Nanomaterials Modern Day Theranostics. Front. Mater. 6, 179. doi:10.3389/fmats.2019.0017.
  54. Lenders, J. J. M., Altan, C. L., Bomans, P. H. H., Arakaki, A., Bucak, S., De With, G., et al. (2014). A Bioinspired Coprecipitation Method for the Controlled Synthesis of Magnetite Nanoparticles. Cryst. Growth Des. 14, 5561–5568. doi:10.1021/cg500816z.
  55. Duan, M., Shapter, J. G., Qi, W., Yang, S., and Gao, G. (2018). Recent Progress in Magnetic Nanoparticles: Synthesis, Properties, and Applications. Nanotechnology 29, 452001. doi:10.1088/1361-6528/aadcec.
  56. Zhang, Q., Yang, X., and Guan, J. (2019). Applications of Magnetic Nanomaterials in Heterogeneous Catalysis. ACS Appl. Nano Mater. 2, 4681–4697. doi:10.1021/ acsanm.9b00976.

Downloads

Published

2023-06-30

Issue

Section

Research Articles

How to Cite

[1]
Dr. B. S. Surung, Dr. R. M. Lokhande, Mrs. M. R. Thokare, Mr. R. D. Khalapure, Dr. B. S. Kharat, Dr. P. P. Pawar, " The Classification and Synthesis Methods of Nanomaterials, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 10, Issue 3, pp.1041-1050, May-June-2023. Available at doi : https://doi.org/10.32628/IJSRST52310321