Medical Image Data Classification Using Deep Machine Learning Techniques and Neural Networks

Authors

  • Dr. J Madhavan  Professor, Department of ECE, Bhoj Reddy Engineering College for Women, Vinay Nagar, Hyderabad, Telangana, India.
  • Dr. N. Satheesh Kumar  Professor, Department of ECE, PBR Visvodaya Institute of Technology and Science, Kavali, SPSR Nellore, Andhra Pradesh, India
  • Dr. M. Venkatesan  Professor, Department of ECE, PBR Visvodaya Institute of Technology and Science, Kavali, SPSR Nellore, Andhra Pradesh, India
  • Dr. Bhaludra R Nadh Singh  Professor, Department of CSE, Bhoj Reddy Engineering College for Women, Vinay Nagar, Hyderabad, Telangana, India
  • Dr. Bremiga Gopalan  Assistant Professor, Department of ECE, Bhoj Reddy Engineering College for Women, Vinay Nagar, Hyderabad, Telangana, India

Keywords:

Copolymerization, Linalool, Methyl methacrylate, Reactivity ratio.

Abstract

Radical copolymerization methodology was explored by and making use of acyclic terpenoids namely linalool with methyl methacrylate (MMA) initiated by p-acetyl benzylidene triphenyl arsonium ylide (p-ABTAY) in xylene at 80±1 oC for 50 minutes under inert atmosphere of N2. The reaction results in alternating copolymer as evidenced from reactivity ratios. The system follows ideal kinetics . The overall activation energy is 93.0  kJ / mol . Alfrey Price, Q - e parameters for linalool has been evaluated as 5.02 and -2.30. The copolymer has been characterized by 1H-NMR, FTIR and TGA.

References

  1. Cruz-Roa, A., Caicedo, J.C., González, F.A. (2011). Visual pattern mining in histology image collections using bag of features. Artificial Intelligence in Medicine, 52(2): 91-106. https://doi.org/10.1016/j.artmed.2011.04.010
  2. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639): 115-118. https://doi.org/10.1038/nature21056
  3. Zare, M.R., Mueen, A., Awedh, M., Seng, W.C. (2013). Automatic classification of medical X-ray images: Hybrid generative-discriminative approach. IET Image Processing, 7(5): 523-532. https://doi.org/10.1049/iet-ipr.2013.0049
  4. Hinton, G.E., Osindero, S., Teh, Y.W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7): 1527-1554. https://doi.org/10.1162/neco.2006.18.7.1527
  5. Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6): 1097-1105. https://doi.org/10.1145/3065386
  6. Simonyan, K., Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. http://arxiv.org/abs/1409.1556.
  7. Barata, C., Ruela, M., Francisco, M., Mendonça, T., Marques, J.S. (2014). Two systems for the detection of melanomas in dermoscopy images using texture and color features. IEEE Systems Journal, 8(3): 965-979. https://doi.org/10.1109/JSYST.2013.2271540
  8. Iyatomi, H., Oka, H., Celebi, M.E., Hashimoto, M., Hagiwara, M., Tanaka, M., Ogawa, K. (2008). An improved internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm. Computerized Medical Imaging and Graphics, 32(7): 566-579. https://doi.org/10.1016/j.compmedimag.2008.06.005
  9. Stoecker, W.V., Wronkiewiecz, M., Chowdhury, R., Stanley, R.J., Bangert, A., Shrestha, B., Calcara, D.A., Rabinovitz, H.S., Oliviero, M., Ahmed, F., Perry, L.A., Drugge, R. (2011). Detection of granularity in dermoscopy images of malignant melanoma using color and texture features. Computerized Medical Imaging and Graphics, 35(2): 144-147. https://doi.org/10.1016/j.compmedimag.2010.09.005
  10. Riaz, F., Hassan, A., Nisar, R., Dinis-Ribeiro, M., Coimbra, M. (2017). Content-adaptive region-based color texture descriptors for medical images. IEEE Journal of Biomedical and Health Informatics, 21(1): 162-171. https://doi.org/10.1109/JBHI.2015.2492464
  11. Ramirez, J., Gorriz, J.M., Segovia, F., Chaves, R., Salas-Gonzalez, D.S., López, M., Alvarez, I., Padilla, P. (2010). Computer aided diagnosis system for the Alzheimer’s disease based on partial least squares and random forest SPECT image classification. Neuroscience Letters, 472(2): 99-103. https://doi.org/10.1016/j.neulet.2010.01.056
  12. Zhang, Y., Chen, S., Wang, S., Yang, J., Phillips, P. (2015). Magnetic resonance brain image classification based on weighted-type fractional Fourier transform and nonparallel support vector machine. International Journal of Imaging Systems and Technology, 25(4): 317-327. https://doi.org/10.1002/ima.22144
  13. Zhang, Y., Dong, Z., Liu, A., Wang, S., Ji, G., Zhang, Z., Yang, J. (2015). Magnetic resonance brain image classification via stationary wavelet transform and generalized eigenvalue proximal support vector machine. Journal of Medical Imaging and Health Informatics, 5(7): 1395-1403. https://doi.org/10.1166/jmihi.2015.1542
  14. Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D., Chen, M. (2014). Medical image classification with convolutional neural network. 13th International Conference on Control Automation Robotics & Vision (ICARCV), Singapore, pp. 844–848. https://doi.org/10.1109/ICARCV.2014.7064414
  15. Bar, Y., Diamant, I., Wolf, L., Greenspan, H. (2015). Deep learning with non-medical training used for chest pathology identification. Proceedings of SPIE Medical Imaging, International Society for Optics and Photonics, Orlando, FL, USA, February 2015, p. 94140V. https://doi.org/10.1117/12.2083124
  16. Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, RM. (2016). Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Transactions on Medical Imaging, 35(5): 1285-1298. https://doi.org/10.1109/TMI.2016.2528162
  17. Ahn, E., Kumar, A., Kim, J., Li, C., Feng, D., Fulham, M. (2016). X-ray image classification using domain transferred convolutional neural networks and local sparse spatial pyramid. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, pp. 855-858. https://doi.org/10.1109/ISBI.2016.7493400
  18. Ouyang, W., Luo, P., Zeng, X., Qiu, S., Tan, Y., Li, H., Yang, S., Wang, Z., Xiong, Y., Qian, C., Zhu, Z., Wang, R., Loy, C., Wang, X., Tang, X. (2014). DeepID-net: multi-stage and deformable deep convolutional neural networks for object detection. http://arxiv.org/abs/1409.3505.
  19. Patil, S., Kuchanur, M. (2012). Lung cancer classification using image processing. International Journal of Engineering and Innovative Technology(IJEIT), 2(3): 37-42
  20. Fernando, B., Fromont, E., Muselet, D., Sebban, M. (2012). Discriminative feature fusion for image classification. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, pp. 3434-3441. 651 https://doi.org/10.1109/CVPR.2012.6248084
  21. Chan, T., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y. (2015).PCANet: A simple deep learning baseline for imageclassification? IEEE Transactions on Image Processing,24(12): 5017-5032.https://doi.org/10.1109/TIP.2015.2475625
  22. Zeng R., Wu, J., Shao, Z., Chen, Y., Chen, B., Senhadji,L., Shu, H. (2016). Color image classification via quaternion principal component analysis network. Neurocomputing, 216: 416-428. https://doi.org/10.1016/j.neucom.2016.08.006
  23. Rakotomamonjy, A., Petitjean, C., Salaun, M.,Thiberville, L. (2014). Scattering features for lung cancerdetection in fibered confocal fluorescence microscopyimages. Artificial Intelligence in Medicine, 61(2): 105-118.https://doi.org/10.1016/j.artmed.2014.05.003

Downloads

Published

2020-05-30

Issue

Section

Research Articles

How to Cite

[1]
Dr. J Madhavan, Dr. N. Satheesh Kumar, Dr. M. Venkatesan, Dr. Bhaludra R Nadh Singh, Dr. Bremiga Gopalan, " Medical Image Data Classification Using Deep Machine Learning Techniques and Neural Networks, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 7, Issue 3, pp.504-512, May-June-2020.