High Performance Asymmetric Supercapacitor based on spinel Co3O4 nanoparticles
Keywords:
Co3O4 Nanostructures, Co-Precipitation, Cyclic Voltammetry, Galvanostatic Charge-Discharge And Asymmetric Supercapacitor.
Abstract
We report a facile synthesis and characterization of spinel Co3O4 nanostructures on its utilization as electrode material for asymmetric supercapacitors by co-precipitation method. The as-synthesized nanostructure was characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR) and Scanning electron microscopy(SEM). Electrochemical behaviour of the Co3O4 electrode performance was characterized by cyclic voltammetry(CV) in 1 M KOH electrolyte using a three electrode system. Galvanostatic charge-discharge measurements made on the fabricated asymmetric supercapacitor gave a high specific capacitance of 17.33 F/g at a discharge current density of 0.2 A/g. Moreover, they showed an excellent cycle stability and better capacity retention of 92% after 2000 continuous charge-discharge cycles.
References
- B.E.Conway, Electrochemical supercapacitors, scientifc fundamentals and technological applications, Plenum, NewYork,1999.
- A. Burke, J.Power Sources 91(2000)37–50.
- B.E. Conway, Transition from Supercapacitor to Battery behavior in electrochemical energy storage, J. Electrochem. Soc. 138 (1991) 1539.
- R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta 45 (2000) 2483.
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845.
- Devadas, S. Baranton, T.W. Napporn, C. Coutanceau, Tailoring of RuO2 nanoparticles by microwave assisted Instant method for energy storage applications, J. Power Sources 196 (2011) 4044
- T.Y. Wei, C.H. Chen, K.H. Chang, S.Y. Lu, C.C. Hu, Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route, Chem. Mater. 21 (2009) 3228.
- S.K. Mehar, G.R. Rao, Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co3O4, J. Phys. Chem. C 115 (2011) 25543
- G.A.Santos,C.M.B. Santos, S.W.DSilva, E.A Urquieta-Gonzalez, P.P.C Sartoratto, Sol–gel synthesis of silica–cobalt composites by employing Co3O4colloidal Dispersions, Colloids Surf. A: Physicochem. Eng. Aspects 395 (2012) 217.
- S.K. Meher, G.R. Rao, Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co3O4, J. Phys. Chem. C 115 (2011) 25543.
- S.K. Meher, G.R. Rao, Ultralayered CO3O4 for high-performance supercapacitor applications, J. Phys. Chem. C 115 (2011) 15646
- S.H. Jhung, T. Jin, Y.K. Hwang, J.S. Chang, Microwave effect in the fast synthesis of microporous materials: which stage between nucleation and crystal growth is accelerated by microwave irradiation? Chem. Eur. J. 13 (2007) 4410
- Y.Y. Liang, S.J. Bao, H.L. Li, Nanocrystalline nickel cobalt hydroxides/ultrastable Y zeolite composite for electrochemical capacitors, J Solid State Electrochem. 11 (2007) 571.
- Y. Li, K. Huang, S. Liu, Z. Yao, S. Zhuang, Meso-macroporous Co3O4 electrode prepared by polystyrene spheres and carbowax templates for supercapacitors, J. Solid State Electrochem. 15 (2011) 587.
- M. Aghazadeh, Electrochemical preparation and properties of nanostructured Co3O4 as supercapacitor material, J. Appl. Electrochem. 42 (2012) 89.
- B. Cullity, Elements of X-ray Diffraction, A.W.R.C. Inc., Massachusetts,1967.
- R. Venkatnarayan, V. Kanniah, and A. Dhathathreya, Journal of Chemical Sciences, vol. 188, p. 179, 2006.
- M.Q. Wu, J.H. Gao, S.R. Zhang, A. Chen, J. Porous Mater. 13 (2006) 407.
- Estepa L and Daudon M, Biospectroscopy, 1997, 3, 347-369.
- Wu S H and Chen D H, J Colloid Interface Sci., 2003, 259, 282-286.
- Saravanan K, Govindarajan S, Chellappa D (2005) Preparation, Characterization, and Thermal Reactivity of Divalent Transition Metal Hydrazine Pyridine-2,n-dicarboxylates (n=3, 4, 5, and 6). Synth React. Inorg. Met.-Org. Chem. 34:353-370
- Koutzarova T, Kolev S, Ghelev C, Paneva D and Nedkov I, Phys Stat Sol (c)., 2006, 3, 1302-1307
- S.K. Meher, G.R. Rao, Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co3O4, J. Phys. Chem. C 115 (2011) 25543.
- L.Q. Mai, F. Yang, Y.L. Zhao, X. Xu, L. Xu, Y.Z. Luo, Nat. Commun. 2 (2011) 381e385.
- M.Q. Wu, J.H. Gao, S.R. Zhang, C. Ai, J. Power Sources 159 (2006) 365e369.
- Khalid, S. et al. Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance. Sci. Rep. 6, 22699; doi: 10.1038/srep22699 (2016).
- S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties, J. Phys. Chem. C 112 (2008) 4406.
- S.K. Meher, G.R. Rao, Ultralayered CO3O4 for high-performance supercapacitor applications, J. Phys. Chem. C 115 (2011) 15646.
- Feng, J.-X., Ye, S.-H., Lu, X.-F., Tong, Y.-X. & Li, G.-R. Asymmetric Paper Supercapacitor Based on Amorphous Porous Mn3O4 Negative Electrode and Ni(OH)2 Positive Electrode: A Novel and High-Performance Flexible Electrochemical Energy Storage Device. ACS Appl. Mat. Interfaces 7, 11444-11451 (2015).
- Luan, F. et al. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale 5, 7984-7990 (2013).
- Chen, P.-C., Shen, G., Shi, Y., Chen, H. & Zhou, C. Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes. ACS Nano 4, 4403-4411 (2010).
- Abolanle S. Adekunle, Bolade O. Agboola, Kenneth I. Ozoemena, Eno E. Ebenso, John A.O. Oyekunle, Oluwafemi S. Oluwatobi, Joel N. Lekitima, Int. J. Electrochem. Sci., 10 (2015) 3414 – 3430
- Wang, D.-W., Li, F. & Cheng, H.-M. Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. J. Power Sources 185, 1563–1568 (2008).
- Chen, H. et al. One-Step Fabrication of Ultrathin Porous Nickel Hydroxide-Manganese Dioxide Hybrid Nanosheets for Supercapacitor Electrodes with Excellent Capacitive Performance. Adv. Energy Mater. 3, 1636–1646 (2013).
- Makgopa, K. et al. A high-rate aqueous symmetric pseudocapacitor based on highly graphitized onion-like carbon/birnessite-type manganese oxide nanohybrids. J. Mat. Chem. A 3, 3480-3490 (2015).
Downloads
Published
Issue
Section
License
Copyright (c) IJSRST

This work is licensed under a Creative Commons Attribution 4.0 International License.