Active Fault Analysis Through Quantitative Assessment Method in Cikapundung Sub Watershed

Authors

  • Nana Sulaksana  Faculty of Geological Engineering, Padjadjaran University, Jalan Raya Bandung-Sumedang Km.21, Jatinangor, Indonesia
  • Supriyadi  Faculty of Geological Engineering, Padjadjaran University, Jalan Raya Bandung-Sumedang Km.21, Jatinangor, Indonesia
  • Ismawan  Faculty of Geological Engineering, Padjadjaran University, Jalan Raya Bandung-Sumedang Km.21, Jatinangor, Indonesia
  • Pradnya Paramarta Raditya Rendra  Faculty of Geological Engineering, Padjadjaran University, Jalan Raya Bandung-Sumedang Km.21, Jatinangor, Indonesia
  • Murni Sulastri  Faculty of Geological Engineering, Padjadjaran University, Jalan Raya Bandung-Sumedang Km.21, Jatinangor, Indonesia

Keywords:

Active fault, IAT, Cikapundung sub-watershed

Abstract

Cikapundung sub-watershed is one of the sub-watersheds at the upper of the Citarum River adjacent to an active regional fault, Lembang Fault. Active fault is a major factor in landform control in area that affected by tectonic activity. Therefore, an approach to identify tectonic activity in the research area through quantitative analysis (morphometry) is required. The morphometric analysis used to identify Index of active tectonics (IAT) uses four parameters, namely: Asymmetry factor (Af), Ratio of valley width and valley height (Vf), Basin shape index (Bs), and Mountain front sinuosity (Smf). Based on the parameters of Index of active tectonics (IAT) , it can be concluded that 10 basins of the Cikapundung sub watershed has a class of low tectonic activity which may still be affected by the active Lembang fault. However, its existence should be noticed by the surrounding community and government, because the major earthquakes can occur anytime. In addition, the variation of Smf and Vf values caused by lithologic responses that are less resistant to weathering and erosion.

References

  1. Baioni, D. (2007). Drainage basin asymmetry and erosion processes relationship through a new representation of two geomorphic indices in the Conca river (northern Apennines). Ital J Geosci, 126(3): 573-579.
  2. Bull, W.B., McFadden, L.D. (1997). Tectonic geomorphology north and south of the Garlock fault, California, In: Doehring. D.C. (Ed.), Geomorphology in Arid Regions, Proceeding 8th Annual Geomorphology Symposium, State University of New York, Binghamton, NY: 115-137.
  3. Bull, W., B. (2007). Tectonic geomorphology of mountains: a new approach to paleoseismology. Blackwell, Malden.
  4. Dehbozorgi, M., Pourkermani, M., Arian, M., Matkan, A., Motamedi, H., Hosseiniasl, A. (2010). Quantitative analysis of relative tectonic activity in the Sarvestan area, central Zagros, Iran. Geomorphology, 21(3-4): 329-341. doi:10.1016/j.geomorph.2010.05.002.
  5. El. Hamdouni, R., Irigaray, C., Fernandez, T., Chac?n, J., Keller, E. (2007). Assessment of relative active tectonics, southwest border of Sierra Nevada (southern Spain). Geomorphology 96: 150?173.
  6. Ghanavati, et al., (2016) Quantitative assessment of relative tectonic activity in the Alamarvdasht river basin, south of Iran. Natural Environment Change, Vol. 2, No. 2, Summer & Autumn 2016, pp. 99- 110
  7. Hare, P.W., Gardner, T.W. (1985). Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. In: Morisawa M, Hack JT (Eds.) Tectonic Geomorphology. Proceedings of the 15th Annual Binghamton Geomorphology Symposium. Allen and Unwin, Boston,123-134.
  8. Keller, E.A., Pinter, N. (2002). Active Tectonics: Earthquakes, Uplift, and Landscape (2nd Ed.). Prentice Hall, New Jersey.
  9. Keller, E.A., Pinter, N. (1996). Active Tectonics: Earthquakes, Uplift, and Landscape. Prentice Hall, New Jersey.
  10. Mosavi, E.J., Arian, M., Ghorshi, M., Nazemi, M. (2015). Neotectonics of Tabas Area, Central Iran by Index of Active Tectonics (IAT). Open Journal of Geology, 5: 209-223.
  11. Omidali, M., Arian, M., Sorbi, A. (2015). Neotectonics of Boroujerd Area, SW Iran by Index of Active Tectonics. Open Journal of Geology, 5: 309-324.
  12. Soehaemi, A,2011. Seismotektonik Jawa Barat dan mikrozonasi potensi bencana gempa bumi DKI Jakarta. Pusat Survei Geologi. Badan Geologi. Bandung.
  13. Silitonga. 1973. Peta Lembar Geologi Skala 1 :100000 Lembar Bandung. Pusat Penelitian dan Pengembangan Geologi : Bandung
  14. Silva, P.G., Goy, J.L., Zazo, C., Bardaj?, T., 2003. Fault-generated mountain fronts in southeast Spain: geomorphologic assessment of tectonic and seismic activity. Geomorphology 50, 203?225.
  15. Syed, A.M? and? Richard,G (2012). Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis. Geoscience Frontiers? 3(4) (2012) 407e428

Downloads

Published

2017-08-31

Issue

Section

Research Articles

How to Cite

[1]
Nana Sulaksana, Supriyadi, Ismawan, Pradnya Paramarta Raditya Rendra, Murni Sulastri, " Active Fault Analysis Through Quantitative Assessment Method in Cikapundung Sub Watershed , International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 3, Issue 6, pp.147-154, July-August-2017.