MnFe2O4 nanoparticle as a new and magnetically separable nanocatalyst for solvent-free synthesis of dihydropyrano [2,3-c]pyrazole derivatives

Authors

  • Santosh B. Gaikwad  Department of Chemistry, Late Pundalikrao Gawali Arts and Science College, Shirpur (Jain), Washim, Maharashtra, India
  • Kishore Puri  Department of Chemistry, Shri Shivaji College of Arts, Commerce and Science, Akola, Maharashtra, India

DOI:

https://doi.org/10.32628/IJSRST173876

Keywords:

Solvent-free synthesis, Magnetically separable, Manganese Ferrite, Pyranopyrazole, Nanocatalyst

Abstract

This study focused on synthesising MnFe2O4 (Manganese Ferrite) nanoparticles using the sol-gel method. We then applied these nanoparticles as a catalyst for synthesising dihydropyrano[2,3-c]pyrazole derivatives at a specific temperature. The significant advantage of this process is that it requires only short reaction times and no solvents. Additionally, the crude pyranopyrazole derivatives can be purified through a simple recrystallization process. The catalyst is reusable, magnetically separable and maintains its activity even after five uses. The chemical integrity of the catalyst was confirmed through FT-IR, 1H NMR, and 13C NMR techniques.

References

  1. R. Afshari, and A. Shaabani, Materials functionalisation with multicomponent reactions: State of the art. ACS Comb. Sci. 20, 499–528 (2018).
  2. A. Dömling, W. Wang, and K. Wang, Chemistry and biology of multicomponent reactions. Chem. Rev. 112, 3083–3135 (2012).
  3. M. Mamaghani, and R. Hossein Nia, A review on the recent multicomponent synthesis of pyranopyrazoles. Polycycl. Aromat. Compd. 41, 223–291 (2019).
  4. M. Koohshari, M. Dabiri, and P. Salehi, Catalyst-free domino reaction in water/ethanol: An efficient, regio- and chemoselective one-pot multicomponent synthesis of pyranopyrazole derivatives. RSC Adv. 4, 10669 (2014).
  5. A. Mary Jacintha, A. Manikandan, K. Chinnaraj, S. Arul Antony, P. Neeraja, Comparative studies of spinel MnFe2O4 nanostructures: structural, morphological, optical, magnetic and catalytic properties. Journal of nanoscience and nanotechnology 15 (12), 9732-9740 (2015)
  6. L. Zhang, Y. Wu, Sol-gel synthesised magnetic MnFe2O4 spinel ferrite nanoparticles as a novel catalyst for oxidative degradation of methyl orange. Journal of Nanomaterials 2013, 2-2 (2013).
  7. Y. Zhang, J. Wang, Z. Su, M. Lu, S. Liu, F. Gu, J. Liu, Y. Tu, T. Jiang, Spinel MnFe2O4 nanoparticles (MFO-NPs) for CO2 cyclic decomposition prepared from ferromanganese ores. Ceramics International 46 (9), 14206-14216 (2020).
  8. A. Maleki, Z. Hajizadeh, and P. Salehi, Mesoporous halloysite nanotubes modified by CuFe2O4 spinel ferrite nanoparticles and study of its application as a novel and efficient heterogeneous catalyst in the synthesis of pyrazolopyridine derivatives. Sci. Rep. 9, 1 (2019).
  9. A. Maleki, and R. Firouzi-Haji, L-Proline functionalised magnetic nanoparticles: A novel magnetically reusable nanocatalyst for one-pot synthesis of 2, 4, 6-triarylpyridines. Sci. Rep. 8, 1 (2018).
  10. Z. Hajizadeh, F. Radinekiyan, R. Eivazzadeh-keihan, and A. Maleki, Development of novel and green NiFe2O4/ geopolymer nanocatalyst based on bentonite for synthesis of imidazole heterocycles by ultrasonic irradiations. Sci. Rep. 10, 1 (2020).
  11. F. Xiao-Jun, H. Xiao, L. Lu, L. Qingye, C. Li, W. Juan, Polydopamine-anchored polyether on Fe3O4 as magnetic recyclable nanoparticle-demulsifiers, Colloids and Surfaces A: Physicochemical and Engineering Aspects 617 126142 (2021).
  12. S.A. Nining, P.T. Anggito, E. Agung, A. Muhammad, A.S. Eko, B.K.P. Witha, G. Masno, S. Perdamean, Syntheses of ferrofluids using polyethylene glycol (PEG) coated magnetite (Fe3O4), citric acid, and water as the working liquid in a cylindrical heat pipe, Nano-Structures & Nano-Objects 25, 100654 (2021).
  13. P. N. Anantharamaiah, H. M. Shashanka, R. Kumar, J. A. Chelvane, and B. Sahoo, Chemically enabling CoFe2O4 for magnetostrictive strain sensing applications at lower magnetic fields: Effect of Zn substitution. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 266, 115080 (2021).
  14. B. N. Sahu, S. C. Sahoo, N. Venkataramani, S. Prasad, & R. Krishnan, Observation of extraordinarily large magnetisation in CoFe2O4/ ZnFe2O4 bilayers. J. Magn. Magn. Mater. 523, 167629 (2021).
  15. F. Nicolas, M.F. Lisa, H. Rob, P. Andrew, G.S.R. Alan, E.S. Allan, Identification of chemically diverse Chk1 inhibitors by receptor-based virtual screening, Bioorganic & Medicinal Chemistry 14 4792-4802 (2006).
  16. Μ.E.A. Zaki, E.M. Morsy, F.M. Abdel-Motti, F.Μ.E. Abdel-Megeid, The Behaviour of Ethyl 1-acetyl-4-aryl-5-cyano-3-methyI-1,4-dihydropyrano 2,3-c pyrazol-6-ylimidoformate Towards Nucleophiles, Heterocyclic Communications 10, 97-102 (2004).
  17. J.L. Wang, D. Liu, Z.J. Zheng, S. Shan, X. Han, S.M. Srinivasula, C.M. Croce, E.S. Alnemri, Z. Huang, Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cellsProc. Natl. Acad. Sci. U.S.A. 97(13), 7124-7129 (2000).
  18. (a) E.A.Z. Magdy, A.S. Hanan, A.H. Ola, E.R. Aymn, Pyrazolopyranopyrimidines as a Class of Anti-Inflammatory Agents, Zeitschrift für Naturforschung C, 61, 1-5 (2006); (b) C.K. Sheng, J.H. Li, N. Hideo, Studies on heterocyclic compounds. 6. Synthesis and analgesic and antiinflammatory activities of 3,4-dimethylpyrano[2,3-c]pyrazol-6-one derivatives, J. Med. Chem. 27(4), 539-544 (1984).
  19. (a) W.P. Smith, L.S. Sollis, D.P. Howes, C.P. Cherry, D.I. Starkey, N.K. Cobley, Dihydropyrancarboxamides Related to Zanamivir:  A New Series of Inhibitors of Influenza Virus Sialidases. 1. Discovery, Synthesis, Biological Activity, and Structure−Activity Relationships of 4-Guanidino- and 4-Amino-4H-pyran-6-carboxamides, J. Med. Chem. 41(6), 787-797 (1998); (b) K. Mazaahir, S. Shilpi, R.K. Khalilur, S.T. Sharanjit, Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents, Bioorg. Med. Chem. Lett. 15(19), 4295-4298, (2005).
  20. (a) H. Junek, H. Aigner, Syntheses with Nitriles, XXXV. Reactions of Tetracyanoethylene with Heterocyclic Compounds, Chem. Ber. 106(3), 914-921 (1973); (b) H. Wamhoff, E. Kroth, K. Strauch, Dihalogentriphenylphosphorane in der Heterocyclensynthese; 271: Heterokondensierte 1,2,4-Triazolo[1,5-c]pyrimidine aus Enaminonitrilen via O-Ethylformimide, Synthesis, 1993(11), 1129-1132 (1993).
  21. A.V. Stachulski, N.G. Berry, A.C.L. Low, S.L. Moores, E. Row, D.C. Warhurst, I.S. Adagu, J.F. Rossignol, Identification of isoflavone derivatives as effective anticryptosporidial agents in vitro and in vivo, J. Med. Chem. 49 (2006) 1450-1454.
  22. H.H. Otto, Synthesis of Some 4H-Pyrano[2.3-c]pyrazoles, Arch. Pharm. 307 (1974) 444-447.
  23. G. Vasuki, K. Kumaravel, Rapid four-component reactions in water: synthesis of pyranopyrazoles, Tetrahedron Lett. 49 (2008) 5636-5638.
  24. G. Sanjib, Z. Cong-Gui, Organocatalysed enantioselective synthesis of 6-amino-5-cyanodihydropyrano 2,3-c pyrazoles, Tetrahedron Letters 50 (2009) 2252-2255.
  25. K. Kumari, D.S. Raghuvanshi, V. Jouikov, K.N. Singh, Sc(OTf)3-catalyzed, solvent-free domino synthesis of functionalized pyrazoles under controlled microwave irradiation, Tetrahedron Lett. 53(9), (2012) 1130-1133.
  26. A.M. Shestopalov, Y.M. Emeliyanova, A.A. Shestopalov, L.A. Rodinovskaya, Z.I. Niazimbetova, D.H. Evans, Cross-condensation of derivatives of cyanoacetic acid and carbonyl compounds. Part 1: Single-stage synthesis of 1′-substituted 6-amino-spiro-4-(piperidine-4′)-2H, 4H-pyrano[2,3-c]pyrazole-5-carbonitriles, Tetrahedron. 59(38) (2003) 7491-7496.
  27. Y. Peng, G. Song, R. Dou, Surface cleaning under combined microwave and ultrasound irradiation: flash synthesis of 4H-pyrano[2,3-c]pyrazoles in aqueous media, Green Chem. 8 (2006) 573-575.
  28. A.M. Shestopalov, Y.M. Emeliyanova, A.A. Shestopalov, L.A. Rodinovskaya, Z.I. Niazimbetova, D.H. Evans, One-Step Synthesis of Substituted 6-Amino-5-cyanospiro-4-(piperidine-4‘)- 2H,4H-dihydropyrazolo[3,4-b]pyrans, Org. Lett. 4(3), (2002) 423-425.
  29. A. Siddekha, A. Nizam, M.A. Pasha, An efficient and simple approach for the synthesis of pyranopyrazoles using imidazole (catalytic) in aqueous medium, and the vibrational spectroscopic studies on 6-amino-4-(4′-methoxyphenyl)-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole using density functional theory, Spectrochem. Acta. A.: Molecular and Biomolecular Spectroscopy, 81(1), (2011) 431-440.
  30. S. Maddila, S. Rana, R. Pagadala, Sh. Kankala, S. Maddila, S.B. Jonnalagadda, Synthesis of pyrazole-4-carbonitrile derivatives in aqueous media with CuO/ZrO2 as recyclable catalyst, Catal. Commun. 61 (2015) 26-30.
  31. D. Shi, J. Mou, Q. Zhuang, L. Niu, N. Wu, X. Wang, Three‐Component One‐Pot Synthesis of 1,4‐Dihydropyrano[2,3‐c]pyrazole Derivatives in Aqueous Media, Synth. Commun. 34 (2004) 4557-4563.
  32. J. S. Godse, S. B. Gaikwad, V. B. Bhise, S. T. Gaikwad, R. P. Pawar, S. B. Ubale, synthesis and comparative study of nano zinc oxide structures with and without cetyltrimethylammonium bromide using sol-gel method, Heterocyclic Letters, 9(4) (2019) 455-460.
  33. J. S. Godse, S. B. Gaikwad, V. B. Bhise, R. P. Pawar and S. B. Ubale, Synthesis of Co3O4 Nanomaterial with Cetyltrimethylammonium Bromide Using Sol–Gel Method in Environmentally Benevolent Aqueous Media, Advanced Science, Engineering and Medicine, 12(6) (2020) 719-722.
  34. J. S. Godse, S. B. Gaikwad, V. B. Bhise, R. Suryawanshi, S. B. Ubale and R. P. Pawar, Synthesis of Binary Manganese Cobalt Oxide (MnCo2O4) Nanomaterial in Environmentally Benign Aqueous Media, Letters in Applied NanoBioScience, 12(4) (2023) 157.
  35. J. S. Godse, S. V. Pawar, S. B. Gaikwad, V. B. Bhise, S. S. Dhotre, S. B. Ubale and R. P. Pawar, Citric Acid Mediated Synthesis of Spinel Binary Copper Manganese Oxide (CuMn2O4) Nanomaterial using Sol-Gel Method, Letters in Applied NanoBioScience, 12(4) 2023 180.
  36. D. Azarifar, S.M. Khatami, M.A. Zolfigol, R. Nejat-Yami, Nano-titania sulfuric acid-promoted synthesis of tetrahydrobenzo [b] pyran and 1, 4-dihydropyrano [2, 3-c] pyrazole derivatives under ultrasound irradiation, J. Iran. Chem. Soc. 11 (2014) 1223-1230;
  37. K. Eskandari, B. Karami, S. Khodabakhshi, Novel silica sodium carbonate (SSC): Preparation, characterization and its first catalytic application to the synthesis of new dihydropyrano[2,3-c]pyrazoles, Catal. Commun. 54 (2014) 124-130
  38. D. Azarifar, S.M. Khatami, R. Nejat-Yami, Nano-titania-supported Preyssler-type heteropolyacid: An efficient and reusable catalyst in ultrasound-promoted synthesis of 4H-chromenes and 4H-pyrano[2,3-c]pyrazoles, J. Chem. Sci. 126 (2014) 95-101
  39. A. Hasaninejad, M. Shekouhy, N. Golzar, A. Zare, M.M. Doroodmand, Silica bonded n-propyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride (SB-DABCO): A highly efficient, reusable and new heterogeneous catalyst for the synthesis of 4H-benzo[b]pyran derivatives, Appl. Catal. A. Gen. 402 (2011) 11-22.
  40. F. Karc, Synthesis of some novel pyrazolo[51-c][1,2,4]triazine derivatives and investigation of their absorption spectra, Dyes Pigm. 76 (2008) 97–103.

Downloads

Published

2024-01-30

Issue

Section

Research Articles

How to Cite

[1]
Santosh B. Gaikwad, Kishore Puri "MnFe2O4 nanoparticle as a new and magnetically separable nanocatalyst for solvent-free synthesis of dihydropyrano [2,3-c]pyrazole derivatives" International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 11, Issue 1, pp.318-326, January-February-2024. Available at doi : https://doi.org/10.32628/IJSRST173876