MnFe2O4 nanoparticle as a new and magnetically separable nanocatalyst for solvent-free synthesis of dihydropyrano [2,3-c]pyrazole derivatives
DOI:
https://doi.org/10.32628/IJSRST173876Keywords:
Solvent-free synthesis, Magnetically separable, Manganese Ferrite, Pyranopyrazole, NanocatalystAbstract
This study focused on synthesising MnFe2O4 (Manganese Ferrite) nanoparticles using the sol-gel method. We then applied these nanoparticles as a catalyst for synthesising dihydropyrano[2,3-c]pyrazole derivatives at a specific temperature. The significant advantage of this process is that it requires only short reaction times and no solvents. Additionally, the crude pyranopyrazole derivatives can be purified through a simple recrystallization process. The catalyst is reusable, magnetically separable and maintains its activity even after five uses. The chemical integrity of the catalyst was confirmed through FT-IR, 1H NMR, and 13C NMR techniques.
References
- R. Afshari, and A. Shaabani, Materials functionalisation with multicomponent reactions: State of the art. ACS Comb. Sci. 20, 499–528 (2018).
- A. Dömling, W. Wang, and K. Wang, Chemistry and biology of multicomponent reactions. Chem. Rev. 112, 3083–3135 (2012).
- M. Mamaghani, and R. Hossein Nia, A review on the recent multicomponent synthesis of pyranopyrazoles. Polycycl. Aromat. Compd. 41, 223–291 (2019).
- M. Koohshari, M. Dabiri, and P. Salehi, Catalyst-free domino reaction in water/ethanol: An efficient, regio- and chemoselective one-pot multicomponent synthesis of pyranopyrazole derivatives. RSC Adv. 4, 10669 (2014).
- A. Mary Jacintha, A. Manikandan, K. Chinnaraj, S. Arul Antony, P. Neeraja, Comparative studies of spinel MnFe2O4 nanostructures: structural, morphological, optical, magnetic and catalytic properties. Journal of nanoscience and nanotechnology 15 (12), 9732-9740 (2015)
- L. Zhang, Y. Wu, Sol-gel synthesised magnetic MnFe2O4 spinel ferrite nanoparticles as a novel catalyst for oxidative degradation of methyl orange. Journal of Nanomaterials 2013, 2-2 (2013).
- Y. Zhang, J. Wang, Z. Su, M. Lu, S. Liu, F. Gu, J. Liu, Y. Tu, T. Jiang, Spinel MnFe2O4 nanoparticles (MFO-NPs) for CO2 cyclic decomposition prepared from ferromanganese ores. Ceramics International 46 (9), 14206-14216 (2020).
- A. Maleki, Z. Hajizadeh, and P. Salehi, Mesoporous halloysite nanotubes modified by CuFe2O4 spinel ferrite nanoparticles and study of its application as a novel and efficient heterogeneous catalyst in the synthesis of pyrazolopyridine derivatives. Sci. Rep. 9, 1 (2019).
- A. Maleki, and R. Firouzi-Haji, L-Proline functionalised magnetic nanoparticles: A novel magnetically reusable nanocatalyst for one-pot synthesis of 2, 4, 6-triarylpyridines. Sci. Rep. 8, 1 (2018).
- Z. Hajizadeh, F. Radinekiyan, R. Eivazzadeh-keihan, and A. Maleki, Development of novel and green NiFe2O4/ geopolymer nanocatalyst based on bentonite for synthesis of imidazole heterocycles by ultrasonic irradiations. Sci. Rep. 10, 1 (2020).
- F. Xiao-Jun, H. Xiao, L. Lu, L. Qingye, C. Li, W. Juan, Polydopamine-anchored polyether on Fe3O4 as magnetic recyclable nanoparticle-demulsifiers, Colloids and Surfaces A: Physicochemical and Engineering Aspects 617 126142 (2021).
- S.A. Nining, P.T. Anggito, E. Agung, A. Muhammad, A.S. Eko, B.K.P. Witha, G. Masno, S. Perdamean, Syntheses of ferrofluids using polyethylene glycol (PEG) coated magnetite (Fe3O4), citric acid, and water as the working liquid in a cylindrical heat pipe, Nano-Structures & Nano-Objects 25, 100654 (2021).
- P. N. Anantharamaiah, H. M. Shashanka, R. Kumar, J. A. Chelvane, and B. Sahoo, Chemically enabling CoFe2O4 for magnetostrictive strain sensing applications at lower magnetic fields: Effect of Zn substitution. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 266, 115080 (2021).
- B. N. Sahu, S. C. Sahoo, N. Venkataramani, S. Prasad, & R. Krishnan, Observation of extraordinarily large magnetisation in CoFe2O4/ ZnFe2O4 bilayers. J. Magn. Magn. Mater. 523, 167629 (2021).
- F. Nicolas, M.F. Lisa, H. Rob, P. Andrew, G.S.R. Alan, E.S. Allan, Identification of chemically diverse Chk1 inhibitors by receptor-based virtual screening, Bioorganic & Medicinal Chemistry 14 4792-4802 (2006).
- Μ.E.A. Zaki, E.M. Morsy, F.M. Abdel-Motti, F.Μ.E. Abdel-Megeid, The Behaviour of Ethyl 1-acetyl-4-aryl-5-cyano-3-methyI-1,4-dihydropyrano 2,3-c pyrazol-6-ylimidoformate Towards Nucleophiles, Heterocyclic Communications 10, 97-102 (2004).
- J.L. Wang, D. Liu, Z.J. Zheng, S. Shan, X. Han, S.M. Srinivasula, C.M. Croce, E.S. Alnemri, Z. Huang, Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cellsProc. Natl. Acad. Sci. U.S.A. 97(13), 7124-7129 (2000).
- (a) E.A.Z. Magdy, A.S. Hanan, A.H. Ola, E.R. Aymn, Pyrazolopyranopyrimidines as a Class of Anti-Inflammatory Agents, Zeitschrift für Naturforschung C, 61, 1-5 (2006); (b) C.K. Sheng, J.H. Li, N. Hideo, Studies on heterocyclic compounds. 6. Synthesis and analgesic and antiinflammatory activities of 3,4-dimethylpyrano[2,3-c]pyrazol-6-one derivatives, J. Med. Chem. 27(4), 539-544 (1984).
- (a) W.P. Smith, L.S. Sollis, D.P. Howes, C.P. Cherry, D.I. Starkey, N.K. Cobley, Dihydropyrancarboxamides Related to Zanamivir: A New Series of Inhibitors of Influenza Virus Sialidases. 1. Discovery, Synthesis, Biological Activity, and Structure−Activity Relationships of 4-Guanidino- and 4-Amino-4H-pyran-6-carboxamides, J. Med. Chem. 41(6), 787-797 (1998); (b) K. Mazaahir, S. Shilpi, R.K. Khalilur, S.T. Sharanjit, Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents, Bioorg. Med. Chem. Lett. 15(19), 4295-4298, (2005).
- (a) H. Junek, H. Aigner, Syntheses with Nitriles, XXXV. Reactions of Tetracyanoethylene with Heterocyclic Compounds, Chem. Ber. 106(3), 914-921 (1973); (b) H. Wamhoff, E. Kroth, K. Strauch, Dihalogentriphenylphosphorane in der Heterocyclensynthese; 271: Heterokondensierte 1,2,4-Triazolo[1,5-c]pyrimidine aus Enaminonitrilen via O-Ethylformimide, Synthesis, 1993(11), 1129-1132 (1993).
- A.V. Stachulski, N.G. Berry, A.C.L. Low, S.L. Moores, E. Row, D.C. Warhurst, I.S. Adagu, J.F. Rossignol, Identification of isoflavone derivatives as effective anticryptosporidial agents in vitro and in vivo, J. Med. Chem. 49 (2006) 1450-1454.
- H.H. Otto, Synthesis of Some 4H-Pyrano[2.3-c]pyrazoles, Arch. Pharm. 307 (1974) 444-447.
- G. Vasuki, K. Kumaravel, Rapid four-component reactions in water: synthesis of pyranopyrazoles, Tetrahedron Lett. 49 (2008) 5636-5638.
- G. Sanjib, Z. Cong-Gui, Organocatalysed enantioselective synthesis of 6-amino-5-cyanodihydropyrano 2,3-c pyrazoles, Tetrahedron Letters 50 (2009) 2252-2255.
- K. Kumari, D.S. Raghuvanshi, V. Jouikov, K.N. Singh, Sc(OTf)3-catalyzed, solvent-free domino synthesis of functionalized pyrazoles under controlled microwave irradiation, Tetrahedron Lett. 53(9), (2012) 1130-1133.
- A.M. Shestopalov, Y.M. Emeliyanova, A.A. Shestopalov, L.A. Rodinovskaya, Z.I. Niazimbetova, D.H. Evans, Cross-condensation of derivatives of cyanoacetic acid and carbonyl compounds. Part 1: Single-stage synthesis of 1′-substituted 6-amino-spiro-4-(piperidine-4′)-2H, 4H-pyrano[2,3-c]pyrazole-5-carbonitriles, Tetrahedron. 59(38) (2003) 7491-7496.
- Y. Peng, G. Song, R. Dou, Surface cleaning under combined microwave and ultrasound irradiation: flash synthesis of 4H-pyrano[2,3-c]pyrazoles in aqueous media, Green Chem. 8 (2006) 573-575.
- A.M. Shestopalov, Y.M. Emeliyanova, A.A. Shestopalov, L.A. Rodinovskaya, Z.I. Niazimbetova, D.H. Evans, One-Step Synthesis of Substituted 6-Amino-5-cyanospiro-4-(piperidine-4‘)- 2H,4H-dihydropyrazolo[3,4-b]pyrans, Org. Lett. 4(3), (2002) 423-425.
- A. Siddekha, A. Nizam, M.A. Pasha, An efficient and simple approach for the synthesis of pyranopyrazoles using imidazole (catalytic) in aqueous medium, and the vibrational spectroscopic studies on 6-amino-4-(4′-methoxyphenyl)-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole using density functional theory, Spectrochem. Acta. A.: Molecular and Biomolecular Spectroscopy, 81(1), (2011) 431-440.
- S. Maddila, S. Rana, R. Pagadala, Sh. Kankala, S. Maddila, S.B. Jonnalagadda, Synthesis of pyrazole-4-carbonitrile derivatives in aqueous media with CuO/ZrO2 as recyclable catalyst, Catal. Commun. 61 (2015) 26-30.
- D. Shi, J. Mou, Q. Zhuang, L. Niu, N. Wu, X. Wang, Three‐Component One‐Pot Synthesis of 1,4‐Dihydropyrano[2,3‐c]pyrazole Derivatives in Aqueous Media, Synth. Commun. 34 (2004) 4557-4563.
- J. S. Godse, S. B. Gaikwad, V. B. Bhise, S. T. Gaikwad, R. P. Pawar, S. B. Ubale, synthesis and comparative study of nano zinc oxide structures with and without cetyltrimethylammonium bromide using sol-gel method, Heterocyclic Letters, 9(4) (2019) 455-460.
- J. S. Godse, S. B. Gaikwad, V. B. Bhise, R. P. Pawar and S. B. Ubale, Synthesis of Co3O4 Nanomaterial with Cetyltrimethylammonium Bromide Using Sol–Gel Method in Environmentally Benevolent Aqueous Media, Advanced Science, Engineering and Medicine, 12(6) (2020) 719-722.
- J. S. Godse, S. B. Gaikwad, V. B. Bhise, R. Suryawanshi, S. B. Ubale and R. P. Pawar, Synthesis of Binary Manganese Cobalt Oxide (MnCo2O4) Nanomaterial in Environmentally Benign Aqueous Media, Letters in Applied NanoBioScience, 12(4) (2023) 157.
- J. S. Godse, S. V. Pawar, S. B. Gaikwad, V. B. Bhise, S. S. Dhotre, S. B. Ubale and R. P. Pawar, Citric Acid Mediated Synthesis of Spinel Binary Copper Manganese Oxide (CuMn2O4) Nanomaterial using Sol-Gel Method, Letters in Applied NanoBioScience, 12(4) 2023 180.
- D. Azarifar, S.M. Khatami, M.A. Zolfigol, R. Nejat-Yami, Nano-titania sulfuric acid-promoted synthesis of tetrahydrobenzo [b] pyran and 1, 4-dihydropyrano [2, 3-c] pyrazole derivatives under ultrasound irradiation, J. Iran. Chem. Soc. 11 (2014) 1223-1230;
- K. Eskandari, B. Karami, S. Khodabakhshi, Novel silica sodium carbonate (SSC): Preparation, characterization and its first catalytic application to the synthesis of new dihydropyrano[2,3-c]pyrazoles, Catal. Commun. 54 (2014) 124-130
- D. Azarifar, S.M. Khatami, R. Nejat-Yami, Nano-titania-supported Preyssler-type heteropolyacid: An efficient and reusable catalyst in ultrasound-promoted synthesis of 4H-chromenes and 4H-pyrano[2,3-c]pyrazoles, J. Chem. Sci. 126 (2014) 95-101
- A. Hasaninejad, M. Shekouhy, N. Golzar, A. Zare, M.M. Doroodmand, Silica bonded n-propyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride (SB-DABCO): A highly efficient, reusable and new heterogeneous catalyst for the synthesis of 4H-benzo[b]pyran derivatives, Appl. Catal. A. Gen. 402 (2011) 11-22.
- F. Karc, Synthesis of some novel pyrazolo[51-c][1,2,4]triazine derivatives and investigation of their absorption spectra, Dyes Pigm. 76 (2008) 97–103.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRST

This work is licensed under a Creative Commons Attribution 4.0 International License.