Synthesis, Structural and Optical Behavior of Cerium Oxide Nanoparticles by Co-Precipitation Method
Keywords:
CeO2, Nanoparticles, co-precipitation, crystallite size, optical propertiesAbstract
In this paper, cerium oxide (CeO2) nanoparticles were synthesized by co-precipitation method and validate its physical, chemical and optical properties. X-ray diffraction (XRD) pattern confirms the formation of cubic fluorite structured CeO2 nanoparticles with Fm3 space group. Comparative study for crystallite size of CeO2 nanoparticles was realized with the help of Debye-Scherer’s method and Williamson-Hall (W-H) plot analysis. The appearance of Ce-O stretching band in the Fourier transformed infrared (FTIR) spectrum confirms the formation of CeO2 nanoparticles. Scanning electron microscopy (SEM) results exposed the formation of spherical shaped particles with nanosize regime. Optical properties of CeO2 nanoparticles were analyzed from UV-visible diffuse reflectance spectroscopy and the direct band gap value was found to be 3.30 eV. Photoluminescence (PL) spectrum display the broad emission peak in the wavelength ranges of 450-495 nm under the excitation of 325 nm.
References
- G. Adachi, N. Imanka, Z. C. Kang, "Binary rare earth oxides", Kluwer Academic Publishers, Newyork (2004).
- A. Kitai, "Luminescent material and application", John Wiley & Sons Ltd,Canada (2008) .
- M. Mogensen, N. M Sammes, G. A Tompsatt, Solid State Ionics, 129 (2000) 63-94.
- O. Zawam, Journal Alloys Compounds, 886 (1998) 275-277.
- J. F. D. Lima, R. F. Martins, C. R. Neri, O. A. Serra, Applied Surface Science, 255 (2009) 9006-9009.
- X. J. Yu, P. B. Xie, Q. D. Su, Physical Chemistry Chemical Physics, 3 (2001) 5266-5269.
- N. Izu, W. Shin, N. Murayama, S. Kanzaki, Sensors and Actuators B, 87 (2002) 95-104.
- S. H. Lee, Z. Y. Lu, S. V. Babu, E. Matijevic, Material Research, 17 (2002) 2744-2749.
- N. Kakuta, N. Morishima, M. Kotobuki, T. Iwase, T. Mizushima, Y. Sato, S. Matsuura, Applied Surface Science, 121- 122 (1997) 408-412.
- R. J. Hunter, V. R. Preedy, "Nanomedicine in Health and Disease", CRC Press, (2017) 271-272.
- M Alifanti, B. Baps, N. Blangenois, Chemical material, 15 (2003) 395-403.
- H.R. Pouretedal, A. Kadhodaie, Chinese Journal of Catalysis, 31 (2010) 1328-1334.
- Y. Wang, T. Mori, J. Li, T. Ikegami, Journal of American Ceramic Society, 85 (2002) 3105-3107.
- S. Phoka, S. Pinisoontorn, P. Chirawatkul, Y. Poo-arporn, S. Maensir, Nanoscale Research letters, 7 (2012) 425-443.
- S. Bojana, A. Zeljka, A. Nadica, K. Radenka, M. Mitric, M. Ametia, D.D. Miroslav, Acta Chimica Slovenica, 55 (2008) 486-491.
- J. Luo, J. Chen, W. Li, Z. Huang, C. Chen, MATEC Web of Conferences, 26 ( 2015) 01007-01007-5.
- G. Wang, Q. Mu, T. Chen, Y. Wangi, Journal of alloy and compounds , 493 (2010) 202-207.
- H. Chang, H. Chen, Journal of Crystal Growth 283 (2005) 457-461.
- G. K. Williamson, W. Hall, Acta Metallurgica, 1 (1953) 22-31.
- S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, S. Maensir, Material chemistry and Physics 115 (2009) 423-428.
- E. Kumar, P. Selvarajan, K. Balasubramanian, Recent Research in Science and technology, 2(4) 2010 37-41.
- M. Chelliah, J.B. Rayappan, U. Krishnan, Journal of Applied Sciences 12(16) (2012)1734-1737.
- P. Kubelka, F. Munk Z Tech phys 12 (1931) 593-601.
- P. Kubelka Journal of the Optical Society of America B, 38 (1948) 448-457
- D. M. D. Prabaharan, K. Sadaiyandi, M. Mahendran, S. Sagadevan, Materials Research, 19(2) (2016) 478-482.
- M. A. Majeedk khan, W. Khan, M. Ahamed, A.Alhazaa, Scientific reports, (2017) 25-32.
- K. K. Babitha, A. Sreedevi, K. P. Priyanka, B. Sabu, T. Varghese, Indian Journal of pure & Applied Physics, 53 (2015) 596-603
You can find the best online HTML, CSS and JS tools at html-css-js.com: editors, code optimizers and more.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRST

This work is licensed under a Creative Commons Attribution 4.0 International License.