Green Synthesis and characterization of ZnO- Ag Nanocomposite by Thymus vulgaris
Keywords:
Hydrothermal synthesis, Thyme leaf extract, ZnO-Ag Nanocomposite, CharacterizationAbstract
In this study, ZnO-Ag nanocomposite (NCs) was synthesized less than 20 nm through a simple and eco-friendly bio-hydrothermal method by using aqueous Thymus vulgaris (Thyme) leaf extract. Thyme leaf extract was used as a reducing agent and surfactant in the green synthesis of ZnO-Ag NCs. Crystal structure, Functional group, morphology, chemical elemental, the band gap of ZnO-Ag NCs were characterized by using powder X-ray diffraction, Fourier Transform Infrared Spectroscopy, Transmission Electron Microscopy, Energy Dispersive X-ray analysis, UV-visible spectroscopy, respectively. TEM results confirmed the size and morphology of nanocomposite. The influence of silver nitrate concentration in the formation of ZnO-Ag NCs was studied. This study future aims that to use biocompatible ZnO-Ag nanocomposite for biological application and food packaging.
References
- I. Khan, K. Saeed, and I. Khan, Nanoparticles: Properties, applications and toxicities, Arab. J. Chem., 2017.
- X.-F. Zhang, Z.-G. Liu, W. Shen, and S. Gurunathan, (2016.). Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci., 17 (9): p. 1534.
- R. Sahay, V. J. Reddy, and S. Ramakrishna, (2014). Synthesis and applications of multifunctional composite nanomaterials, 9:25.
- S. Ghosh, V. S. Goudar, K. G. Padmalekha, S. V. Bhat, S. S. Indi, and H. N. Vasan, (2012). ZnO/Ag nanohybrid: synthesis, characterization, synergistic antibacterial activity and its mechanism, RSC Adv., 2 (3): p. 930–940.
- T. Ghosh, A. B. Das, B. Jena, and C. Pradhan, (2015). Antimicrobial effect of silver zinc oxide (Ag-ZnO) nanocomposite particles, Front. Life Sci., 8 (1):p. 47–54.
- Z. Fan and J. G. Lu, (2005). Zinc oxide nanostructures: synthesis and properties. J. Nanosci. Nanotechnol. 5 (10): p. 1561–1573.
- [7] K. J. I. K. Lee, Study of Stability of ZnO Nanoparticles and Growth Mechanisms of Colloidal Zno Nanorods, 2005.
- R. Marsalek, (2005). Particle Size and Zeta Potential of ZnO, APCBEE Procedia. (9): p. 13–17.
- A. Hezam et al., (2017).Heterogeneous growth mechanism of ZnO nanostructures and the effects of their morphology on optical and photocatalytic properties, CrystEngComm. 19 (24): p. 3299–3312.
- S. H, Manikandan, B. Ahmed M, G. V, and G. V, (2017). Enhanced Bioactivity of Ag/ZnO Nanorods-A Comparative Antibacterial Study (Sbds), J. Nanomed. Nanotechnol, 4(3): p. 1–7.
- K. Byrappa and M. Yoshimura, Hydrothermal Technology—Principles and Applications. 2001.
- H. Zhang, X. Ma, J. Xu, J. Niu, and D. Yang, (2003). Arrays of ZnO nanowires fabricated by a simple chemical solution route, Nanotechnology, 14 (4): p. 423–426.
- Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng, and K. Wei, (2007). Ag/ZnO Heterostructure Nanocrystals: Synthesis, Characterization, and Photocatalysis, Inorg. Chem. 46 (17): p. 6980–6986.
- S. C. Motshekga, S. S. Ray, M. S. Onyango, and M. N. B. (2013). Momba, Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay, J. Hazard. Mater. (262): p. 439–446.
- M. S. Jadhav, S. Kulkarni, P. Raikar, D. A. Barretto, S. K. Vootla, and U. S. Raikar, (2018). Green biosynthesis of CuO & Ag–CuO nanoparticles from Malus domestica leaf extract and evaluation of antibacterial, antioxidant and DNA cleavage activities, New J. Chem. 42 (1): p. 204–213.
- R. Zamiri et al., (2014). Far-infrared optical constants of ZnO and ZnO/Ag nanostructures, RSC Adv. 4 (40): p. 20902–20908.
- S. Aiswarya Devi, M. Harshiny, S. Udaykumar, P. Gopinath, and M. Matheswaran, (2017). Strategy of metal iron doping and green-mediated ZnO nanoparticles: dissolubility, antibacterial and cytotoxic traits, Toxicol. Res. (Camb). 6 (6): p. 854–865.
- R. Zamiri et al., (2014). Far-infrared optical constants of ZnO and ZnO/Ag nanostructures, RSC Adv., 4 (40): p. 20902–20908.
- P. Devaraj, P. Kumari, C. Aarti, and A. Renganathan, (2013). Synthesis and Characterization of Silver Nanoparticles Using Cannonball Leaves and Their Cytotoxic Activity against MCF-7 Cell Line, J. Nanotechnol. (2013): p. 1–5.
- K. Saoud, R. Alsoubaihi, N. Bensalah, T. Bora, M. Bertino, and J. Dutta, (2015). Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications, Mater. Res. Bull., (63): p. 134–140.
- M. Zare, K. Namratha, K. Byrappa, D. M. Surendra, S. Yallappa, and B. Hungund, Surfactant Assisted Solvothermal Synthesis of ZnO Nanoparticles and Study of their Antimicrobial and Antioxidant Properties, J. Mater. Sci. Technol., 2017.
- T. Ibrahim, H. Alayan, and Y. Al Mowaqet, (2012). The effect of Thyme leaves extract on corrosion of mild steel in HCl, Prog. Org. Coatings. 75 (4): p. 456–462.
- S. Adhikari, A. Banerjee, N. K. Eswar, D. Sarkar, and G. Madras, (2015). Photocatalytic inactivation of E. coli by ZnO–Ag nanoparticles under solar radiation, RSC Adv., 5 (63): p. 51067–51077.
- Y. Li, X. Zhao, and W. Fan, (2011). Structural, Electronic, and Optical Properties of Ag-Doped ZnO Nanowires: First Principles Study, J. Phys. Chem. C, 115 (9): p. 3552–3557.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRST

This work is licensed under a Creative Commons Attribution 4.0 International License.