Optimization of Performance of Heat Exchanger through Nano Fluid Particles

Authors

  • Akash Anilkumar Bhavsar  Research Scholar, Madhav University and Assistant Professor, GSFC University, Vadodara, Gujarat, India
  • Dr. Sadanand Namjoshi  Associate Professor, Madhav University, Pindwara, Rajasthan, India

DOI:

https://doi.org//10.32628/IJSRST1962201

Keywords:

Dengue, Serotypes, NS2B-NS3 Protein, CADD ( Computer Aided Drug Design)

Abstract

This paper study about the use nanofluid as base fluid, stability control, thermo- physical properties, pressure drop and CFD Analysis. Our project is based on CFD Analysis “Performance Analysis of Heat Exchanger” using Fluent. This paper presents the effect of using Al2O3 nanofluid in shell and tube type heat exchanger, addition surfactant on nanofluid for long term stability, and also shows the changes in heat transfer coefficient and pressure drop. Upon geometrical optimization, the first phase of this work aims at studying the influence of Al2O3 nanofluid at 0.2% concentrations size of 20nm by admitting water along the shell side and Al2O3 nanofluid along the tube side and also water as base fluid having water in both shell and tube side of heat exchanger. The shell and tube heat exchanger of various geometrical configurations is modelled using ANSYS 2019 R3. The heat transfer and fluid flow characteristics through the heat exchanger are obtained by using ANSYS Fluent CFD. Temperature, pressure contours and velocity streamlines of the shell and tube heat exchanger are obtained for various geometrical configurations and for 0.2% volume concentration of nanofluid. The use of nanofluid resulted in increase of both the pressure drop and heat transfer coefficient. The heat transfer coefficient is increased by 7.6% than water by using 0.2% volume fraction Al2O3 nanofluid and pressure drop is increased upto 11%.

References

  1. A Review on Nano fluids: Preparation, Stability Mechanisms, and Applications
  2. M. E. Burnett and S. Q. Wang, “Current sunscreen controversies:Acriticalreview,”Photodermatology,Photoimmunology&Photomedicine,vol.27, no.2,pp.58–67,2011.
  3. D.Lapotko,“Erratum: Plasmonic nanoparticlegenerated photo thermal bubbles and their biomedical applications (Nano medicine (Nano medicine Lond.) (2009) 4:7 (813845)),” Nanomedicine,vol.11,no.5,p.566,2016.
  4. K. MaierHauff, R. Rothe, and R. Scholz, “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiform,” Journal of NeuroOncology,vol. 81,no.1,pp.53– 60,2007.
  5. Numerical Investigation of shell and tube heat exchanger using Al2O3 nanofluid
  6. Experimental Investigation of Heat transfer rate of Nano fluids using a Shell and Tube Heat exchanger.
  7. E. Ozden, I. Tari, “Shell side CFD analysis of a small shellandtube heat exchanger,” Energy. Convers. Manage. 51, 100414, 2010.
  8. W. K. Kim, T. Aicher, “Experimental investigation of heat transfer in shellandtube heat exchangers without baffles,” Korean J. Chem. Eng. 14, 93100, 1997.
  9. D. Eryener, “Thermoeconomic optimization of baffle spacing for shell and tube heat exchangers,” Energy. Convers. Manage. 47, 14781489, 2006.
  10. Kwon Y H, Kim D, Li C G and Lee J K 2011 Heat transfer and pressure drop characteristics of Nano fluids in a plate heat exchanger, Journal of Nano science and Nanotechnology11(7)57695774.
  11. A review on nanofluid; fabrication, stability, and thermophysical properties.
  12. M.Wagener,B.S.Murty,andB.G¨unther,“Preparationofmetal nanosuspensions by high pressure dcsputtering on running liquids,” in Proceedings of the 1996 MRS Fall Symposium, E. P. George, R. Gotthardt, K. Otsuka, S. TrolierMcKinstry, and M. WunFogle, Eds., pp. 149–154, Materials Research Society, Pittsburgh,PA,USA,1997.
  13. J. A. Eastman, S. U. Choi, S. Li, L. J. Thompson, and S. Lee, “Enhanced thermal conductivity through the development of nanofluids,”inProceedingsofthe1996MRSFallSymposium,E.P. George,R.Gotthardt,K.Otsuka,S.TrolierMcKinstry,andM. WunFogle,Eds.,vol.457,pp.3– 11,MaterialsResearchSociety, Pittsburgh,PA,USA,1997.
  14. H.T.Zhu,Y.S.Lin,andY.S.Yin,“Anovelonestepchemical methodfor preparation ofcoppernanofluids,”JournalofColloid andInterfaceScience,vol.277,no.1,pp.100–103,2004.
  15. P. X. Tran and Y. Soong, Preparation of nanofluids using laser ablation in liquid technique, United States, Not published presentationonly,2007.
  16. C.H. Lo, T.T. Tsung, and L.C. Chen, “Shapecontrolled synthesisofCu basednanofluidus in submergedarcnanoparticle synthesissystem(SANSS),”JournalofCrystalGrowth,vol.277, no.1–4,pp.636–642,2005.
  17. C.H.Lo,T.T.Tsung,andL.C.Chen,“Ninanomagneticfluid prepared by submerged arc nano synthesis system (SANSS),” JSME International Journal Series B Fluids and Thermal Engineering,vol.48,no.4,pp.750–755,2006.
  18. X.WangandX.Xu,“Thermalconductivityofnanoparticlefluidmixture,”JournalofThermophysicsandHeatTransfer,vol.13,no. 4,pp.474–480,1999.
  19. S.Lee,S.U.Choi,S.Li,andJ.A.Eastman,“Measuringthermal conductivity of fluids containing oxide nanoparticles,” Journal ofHeatTransfer,vol.121,no.2,pp.280–289,1999.
  20. W. Chamsaard, S. Brundavanam, C. C. Fung, D. Fawcett, and G. Poinern, “Nanofluid types, their synthesis, properties andincorporationindirectsolarthermalcollectors:Areview,” Nanomaterials,vol.7,no.6,articleno.131,2017.
  21. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethyleneglycol based nano fluids containing copper nanoparticles,” Applied Physics Letters, vol.78,no.6,pp.718–720,2001.
  22. L.Kong,J.Sun,andY.Bao,“Preparation,characterization and tribological mechanism of nanofluids,” RSCAdvances ,vol.7,no. 21,pp.12599–12609,2017.
  23. stability and thermal analysis of MWCNT thermal oil based nanofluid.
  24. W. Yu, H. Xie, Y. Li, L. Chen, Q. Wang, Experimental investigation on the thermal transport properties of ethylene glycol based nanofluids containing low volume concentration diamond nanoparticles, Colloids Surf. A 380 (2011) 1–5.
  25. K.S. Suganthi, V. Leela Vinodhan, K.S. Rajan, ZnOpropylene glycolwater nanofluids with improved properties for potential applications in renewable energy and thermal management, Colloids Surf. A 506 (2016) 63–73.
  26. R. Shu, Y. Gan, H. Lv, D. Tan, Preparation and rheological behavior of ethylene glycol based TiO2 nanofluids, Colloids Surf. A 509 (2016) 86–90.
  27. S.U. Ilyas, R. Pendyala, A. Shuib, N. Marneni, A review on the viscous and thermal transport properties of nanofluids, Adv. Mater. Res. 917 (2014) 18–27.
  28. W. Yu, H. Xie, L. Chen, Y. Li, Enhancement of thermal conductivity of kerosenebased Fe3O4 nanofluids prepared via phasetransfer method, Colloids Surf. A 355 (2010) 109–113.
  29. S.U. Ilyas, R. Pendyala, N. Marneni, Stability of nanofluids, in: V.S. Korada, N. Hisham, B. Hamid (Eds.), Engineering Applications of Nanotechnology: From Energy to Drug Delivery, Springer Int. Publishing, Cham, 2017, pp. 1–31.
  30. P. Gurav, S.S. Naik, K. Ansari, S. Srinath, K.A. Kishore, Y.P. Setty, S. Sonawane, Stable colloidal copper nanoparticles for a nanofluid: production and application, Colloids Surf. A 441 (2014) 589–597.
  31. M.K.Bushehri,A.Mohebbi,andH.H.Rafsanjani,“Prediction of thermal conductivity and viscosity of nanofluids by molecular dynamics simulation,”Journal of Engineering Thermophysics, vol.25,no.3,pp.389–400,2016.
  32. J.HongandD.Kim,“Effects of aggregation on the thermal conductivity of alumina/water nanofluids,” Thermochimica Acta, vol.542,pp.28–32,2012.
  33. O. Arthur and M. A. Karim, “An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications,”Renewable & Sustainable Energy Reviews, vol.55,pp.739–755,2016. 34H.Setia,R.Gupta,andR.K.Wanchoo,“Stabilityofnanofluids,” MaterialsScienceForum,vol.757,pp.139–149,2013. 35 J.M.WuandJ.Zhao,“A review of nanofluid heattransfer and critical heat flux enhancement—research gap to engineering application,”ProgressinNuclearEnergy,vol.66,pp.13–24,2013.
  34. A. Ghadimi, R. Saidur, and H. S. C. Metselaar, “A review of nanofluid stability properties and characterization in stationary conditions,” International Journal of Heat and Mass Transfer, vol.54,no.1718,pp.4051–4068,2011. A.M.Tiara,S.Chakraborty,I.Sarkar,A.Ashok,S.K.Pal,and S. Chakraborty, “Heat transfer enhancement using surfactant based alumina nanofluid jet from a hot steel plate,”Experimental Thermal and Fluid Science,vol.89,pp.295–303,2017.

Downloads

Published

2019-04-30

Issue

Section

Research Articles

How to Cite

[1]
Akash Anilkumar Bhavsar, Dr. Sadanand Namjoshi, " Optimization of Performance of Heat Exchanger through Nano Fluid Particles , International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 6, Issue 2, pp.952-963, March-April-2019. Available at doi : https://doi.org/10.32628/IJSRST1962201