Generalised Limits for Vector Valued Sequences
DOI:
https://doi.org/10.32628/IJSRST207145Keywords:
Banach limit, Almost convergence , Vector valued Banach limits, Vector valued Intrinsic Characterisation of Almost ConvergenceAbstract
The object of the present paper is to introduce the extension of the concept of Banach limits for vector valued sequences and we prove the existence of Banach limits for vector valued sequences. Also introduced Banach spaces X,X^*,X^(**) 1-complemented in their bi duals admit vector valued Banach limits. Lastly we propose Lorentz’s vector valued intrinsic characterisation of almost convergence.
References
- A. Aizpuru, R. Armario, F. J. Garcia – Pacheco, F. J. Perez-Fernandez, J. Math. Anal. Appl., 379:1 (2011), 82-90.
- A. L. Peressini, Studia Math., 35 (1970), 111-121.
- E. M. Semenov, F. A. Sukochev, J. Func. Anal., 259:5 (2010), 1517-1541.
- G. Lorentz, Acta Math., 80 (1948), 167-190.
- J. Boss, Classical and Modern Methods in Summability, Oxford University Press, New York, 2000.
- S. Banach, Theorie des operations lineaires, Chelsea Publ., Warszawa, 1932.
- V. M. Kadets, B. Shumiatskiy, Matematicheskaya fizika, analiz, geometriya, 7:2 (2000), 184-195.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRST

This work is licensed under a Creative Commons Attribution 4.0 International License.