Metal-Conductive Polymer Core-Shell Nanowires: Electroless Reduction of Pd and Cu On Polypyrrole/DNA Templates Bearing 2-2'-Bipyridyl Groups

Authors

  • Mahdi Almaky  Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya.
  • Reda Hassanien  Department of Chemistry, Faculty of Science, New Valley University, El-Kharja, Egypt
  • William Clegg  Chemistry, School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, UK
  • Ross Harrington  Chemistry, School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, UK
  • Andrew Houlton  Chemical Nanoscience Laboratory, School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, UK
  • Benjamin Horrocks  Chemical Nanoscience Laboratory, School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, UK

DOI:

https://doi.org//10.32628/IJSRST207250

Keywords:

Copper, Palladium, DNA, Nanowires, Poly(N-substituted) Pyrrole, Conductivity, Hybrid Nanostructures

Abstract

A method for the preparation of conductive polymer nanowires bearing metal ion chelating 2,2’-bipyridyl groups is described. N-(3-pyrrol-1-yl-propyl)-2,2'-bipyridinium hexafluorophosphate (NP2PBH) was templated on λ-DNA in aqueous solution using FeCl3 as oxidant to initiate polymerization. The polyNP2PBH/DNA nanowires were then decorated with metals (Cu or Pd) by electroless deposition [Cu(NO3)2/ascorbate or PdCl42-/NaBH4]. UV-vis absorption spectra of the hybrid materials show the absorption peak due to the plasmon resonance of Cu at about 550 nm and a broad continuous band consistent with metallic Pd in the range 300−700 nm. The morphology, size and electrical properties of the hybrid nanostructures have been characterized using scanning probe techniques (atomic force microscopy (AFM), scanning conductance microscopy (SCM) and conductive atomic force microscopy (cAFM)). The polyNP2PBH/DNA nanowires show a continuous, smooth and uniform appearance (mean diameter 5.0 nm). Cu deposits on polyNP2PBH/DNA nanowires by a nucleation and growth process that leads eventually to smooth, conductive Cu nanowires. In contrast, Pd deposits in a non-uniform manner on polyNP2PBH/DNA and has inconsistent electrical conductivity. The electrical conductivity of single Cu/polyNP2PBH/DNA nanowires was estimated to be 1.6 ± 0.27 S cm-1 which we suggest is limited by electron transfer between Cu grains.

References

  1. Z Chen, C. Liu, F. Cao, J. Ren, X. Qu, Chem. Soc. Rev. 2018, 47, 4017-4072.
  2. A. Houlton and S. M. D. Watson, Annu. Rep. Prog. Chem., Sect.A: Phys. Inorg. Chem. 2011, 107, 21-42.
  3. N. C. Seeman, Nature 2003, 421, 427-431.
  4. N. C. Seeman, Nanotechnology 1991, 2, 149-159.
  5. C. A. Mirkin, Inorg. Chem., 2000, 39, 2258-2272.
  6. A. J. Storm, J. van Noort, S. de Vries and C. Dekker, Appl. Phys. Lett. 2001, 79, 3881-3883.
  7. C. F. Monson and A. T. Woolley, Nano Lett., 2003, 3(3), 359-363.
  8. H. A. Becerril, R. M. Stoltenberg, C. F. Monson and A. T. Woolley, J. Mater. Chem. 2004, 14(4), 611-616.
  9. E. Braun, Y. Eichen, U. Sivan and G. Ben-Yoseph, Nature 1998, 391, 775-778.
  10. J. Richter, R. Seidel, R. Kirsch, M. Mertig, W. Pompe, J. Plaschke and H. K. Schackert, Adv. Mater. 2000, 12, 507-510.
  11. L. Dong, T. Hollis, B. A. Connolly, N. G. Wright, B. R. Horrocks and A. Houlton, Adv. Mater. 2007, 19(13), 1748-1751.
  12. J. L. Coffer, S. R. Bigham, R. F. Pinizzotto and H. Yang, Nanotechnology 1992, 3, 69-76.
  13. L. Levina, W. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones and E. H. Sargent, Adv. Mater. 2005, 17, 1854-1857.
  14. Y. Ma, J. Zhang, G. Zhang and H. He, J. Am. Chem. Soc. 2004, 126, 7097-7101.
  15. P. Nickels, W. U. Dittmer, S. Beyer, J. P. Kotthaus and F. C. Simmel, Nanotechnology 2004, 15, 1524-1529.
  16. L. Dong, T. Hollis, S. Fishwick, B. A. Connolly, N. G. Wright, B. R. Horrocks and A. Houlton, Chem. Eur. J. 2007, 13, 822-828.
  17. Md M. Hossen, L. Bendickson, P. E. Palo, Z. Yao, M. Nilsen-Hamilton and A. C. Hillier, Nanotechnology 2018, 29, 355603.
  18. B. Uprety, T. R. Westover, M. Stoddard, K. Brinkerhoff, J. Jensen, R. C. Davis, A. T. Woolley and J. N. Harb, Langmuir 2017, 33(3), 726-735
  19. B. R. Aryal, T. R. Westover, D. R. Ranasinghe, D. G. Calvopiña, B. Uprety, J. N. Harb, R. C. Davis and A. T. Woolley, Langmuir, 2018, 34(49), 15069-15077
  20. R. A. Matula, J.Phys. Chem. Ref. Data 1979, 8(4), 1147-1298.
  21. S. M. D. Watson, N. G. Wright, B. R. Horrocks and A. Houlton, Langmuir 2010, 26(3), 2068-2075.
  22. Y. Geng, A. C. Pearson, E. P. Gates, B. Uprety, R. C. Davis, J. N. Harb and A. T. Woolley, Langmuir 2013, 29(10), 3482-3490.
  23. J. Pate, F. Zamora, S. M. D. Watson, N. G. Wright, B. R. Horrocks and A. Houlton, J. Mater. Chem. C 2014, 2(43), 9265-9273.
  24. R. Hassanien, M. M. Almaky, A. Houlton and B. R. Horrocks, RSC Adv. 2016, 6(101), 99422-99432.
  25. C. Fang, Y. Fan, J. M. Kong, G. J. Zhang, L. Linn and S. Rafeah, Sens. Actuator B-Chem. 2007, 126(2), 684-690.
  26. F. Yang, S. C. Kung, M. Cheng, J. C. Hemminger and R. M. Penner, ACS Nano, 2010, 4, 5233-5244.
  27. M. N. Al-Hinai, R. Hassanien, N. G. Wright, A. B. Horsfall, A. Houlton and B. R. Horrocks, Faraday Discuss. 2013, 164,71-91.
  28. J. Richter, M. Mertig, W. Pompe, I. Mönch and H. K. Schackert, Appl. Phys. Lett. 2001, 78(4), 536-538.
  29. S. Kundu, K. Wang, D. Huitink and H. Liang, Langmuir 2009, 25(17), 10146-10152.
  30. K. Nguyen, S. Campidelli and A. Filoramo, Methods in Molecular Biology (Clifton, N.J.) 2011, 749, 49-59.
  31. M. Al-Hinai, R. Hassanien, S. M. D. Watson, N. G. Wright, A. Houlton and B. R. Horrocks, Nanotechnology 2016, 27(9), 095704.
  32. R. J. Waltman and J. Bargon, Can. J. Chem. 1986, 64(1), 76-95.
  33. Q. Wu, G. D. Storrier, K. R. Wu, J. P. Shapleigh and H. D. Abruña, Anal. Biochem. 1998, 263(1), 102-112.
  34. B. R. Saunders, R. J. Fleming and K. S. Murray, Chem. Mater. 1995, 7(6), 1082-1094.
  35. D. Bensimon, A. J. Simon, V. Croquette and A. Bensimon, Phys. Rev. Lett. 1995, 74(23), 4754-4757.
  36. R. J. Waltman, A. F. Diaz and J. Bargon, J. Phys. Chem. 1984, 88(19), 4343-4346.
  37. J. Heinze, Synth. Met., 1991, 43(1-2), 2805-2823.
  38. A. F. Diaz, J. Castillo, K. K. Kanazawa, J. A. Logan, M. Salmon and O. Fajardo, J. Electroanal. Chem. 1982, 133(2), 233-239.
  39. K. Takada, Z. Naal and H. D. Abruña, Langmuir 2003, 19(13), 5402- 5406.
  40. P. W. Hansen and P. W. Jensen, Spectrochim. Acta A 1994, 50(1), 169-183.
  41. J. L. Duan, T. W. Cornelius, J. Liu, S. Karim, H. J. Yao, O. Picht, M. Rauber, S. Müller and R. Neumann, J. Phys. Chem. C 2009, 113(31), 13583-13587.
  42. J. A. Creighton and D. G. Eadon, J. Chem. Soc. Faraday Trans. 1991, 87, 3881-3891.
  43. T.-Y. Chen, S.-F. Chen, H.-S. Sheu and C.-S. Yeh, J. Phys. Chem. B. 2002, 106, 9717-9722.
  44. F. M. Capece, V. D. Castro, C. Furlani, G. Mattogno, C. Fragale, M.
  45. Gargano and M. J. Rossi, Electron. Spectrosc. Relat. Phenom. 1982, 27, 119-128.
  46. J. C. Fuggle, E. Källne, L. M. Watson and D. J. Fabian, Phys. Rev. B 1977, 16(2), 750-761.
  47. S. Pruneanu, S. A. F. Al-Said, L. Dong, T. A. Hollis, M. A. Galindo, N. G. Wright, A. Houlton and B. R. Horrocks, Adv. Funct. Mater. 2008, 18(16), 2444–2454.
  48. S. M. D. Watson, M. A. Galindo, B. R. Horrocks, and A. Houlton, J. Am. Chem. Soc. 2014, 136(18), 6649-6655.
  49. C. Staii, A. T. Johnson and N. J. Pinto, Nano Lett. 2004, 4(5), 859- 862.
  50. T. S. Jespersen and J. Nygård, Nano Lett. 2005, 5(9), 1838-1841.
  51. R. Hassanien, M. Al-Hinai, S. A. F. Al-Said, R. Little, L. Šiller, N. G. Wright, A. Houlton and B. R. Horrocks, ACS Nano 2010, 4(4), 2149- 2159.First Author and Second Author. 2002. International Journal of Scientific Research in Science, Engineering and Technology.(Nov.2002)

Downloads

Published

2020-04-30

Issue

Section

Research Articles

How to Cite

[1]
Mahdi Almaky, Reda Hassanien, William Clegg, Ross Harrington, Andrew Houlton, Benjamin Horrocks, " Metal-Conductive Polymer Core-Shell Nanowires: Electroless Reduction of Pd and Cu On Polypyrrole/DNA Templates Bearing 2-2'-Bipyridyl Groups, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 7, Issue 2, pp.406-423, March-April-2020. Available at doi : https://doi.org/10.32628/IJSRST207250