Steering Angle Prediction Based on Road Direction using Convolution Neural Network (CNN)

Authors

  • Aires Da Conceicao  U.G. Student, Sigma Institute of Engineering, Vadodara, Gujarat, India
  • Dr. Sheshang Degadwala  Associate Professor, Sigma Institute of Engineering, Vadodara, Gujarat, India

DOI:

https://doi.org/10.32628/IJSRST207429

Keywords:

Self-driving car, CNN, Steering angle, Prediction.

Abstract

Self driving vehicle is a vehicle that can drive by itself it means without human interaction. This system shows how the computer can learn and the over the art of driving using machine learning techniques. Therefore for a car achieving the autonomous ability it must show the control of human activities while driving. Those activities include control of steering wheel. There exist different techniques to control the steering angle and one of them is CNN. In this article is going to show how CNN can be used to predict the steering angle.

References

  1. Oussama A, Mohamed T. A literature review of steering angle prediction algorithms for Self-driving cars. :10.
  2. Kluge K. Extracting road curvature and orientation from image edge points without perceptual grouping into features. Intell Veh Symp Proc. 1994;(3 13):109-114. doi:10.1109/ivs.1994.639482
  3. Yuan C, Chen H, Liu J, Zhu D, Xu Y. Robust lane detection for complicated road environment based on normal map. IEEE Access. 2018;6:49679-49689. doi:10.1109/ACCESS.2018.2868976
  4. Du S, Guo H, Simpson A. Self-Driving Car Steering Angle Prediction Based on Image Recognition. Cs231NStanfordEdu. 2017. http://cs231n.stanford.edu/reports/2017/pdfs/626.pdf.
  5. Detec L, Luong QT. Primary Examiner Andrew W . Johns. 2004;1(12).
  6. Schneiderman H, Nashman M. A Discriminating Feature Tracker for Vision-Based Autonomous Driving. IEEE Trans Robot Autom. 1994;10(6):769-775. doi:10.1109/70.338531
  7. Mustafa R, Min Y, Zhu D. Obscenity detection using haar-like features and gentle Adaboost classifier. Sci World J. 2014;2014. doi:10.1155/2014/753860
  8. nashman_m_1993_1.pdf.
  9. Niu J, Lu J, Xu M, Lv P, Zhao X. Robust Lane Detection using Two-stage Feature Extraction with Curve Fitting. Pattern Recognit. 2016;59:225-233. doi:10.1016/j.patcog.2015.12.010
  10. Veit T, Tarel JP, Nicolle P, Charbonnier P. Evaluation of road marking feature extraction. IEEE Conf Intell Transp Syst Proceedings, ITSC. 2008;(November):174-181. doi:10.1109/ITSC.2008.4732564
  11. Wang J, An X. A multi-step curved lane detection algorithm, based on hyperbola-pair model. 2010 IEEE Int Conf Autom Logist ICAL 2010. 2010:132-137. doi:10.1109/ICAL.2010.5585398
  12. Valiente R, Zaman M, Ozer S, Fallah YP. Controlling steering angle for cooperative self-driving vehicles utilizing CNN and LSTM-based deep networks. IEEE Intell Veh Symp Proc. 2019;2019-June(April):2423-2428. doi:10.1109/IVS.2019.8814260
  13. Wang D, Wen J, Wang Y, Huang X, Pei F. End-to-End Self-Driving Using Deep Neural Networks with Multi-auxiliary Tasks. Automot Innov. 2019;2(2):127-136. doi:10.1007/s42154-019-00057-1
  14. Chen J, Ruan Y, Chen Q. A precise information extraction algorithm for lane lines. China Commun. 2018;15(10):210-219. doi:10.1109/CC.2018.8485482
  15. Jang HJ, Baek SH, Park SY. Curved lane detection using robust feature extraction. 2014 2nd Int Conf Syst Informatics, ICSAI 2014. 2015;(Icsai):109-112. doi:10.1109/ICSAI.2014.7009269

Downloads

Published

2020-08-30

Issue

Section

Research Articles

How to Cite

[1]
Aires Da Conceicao, Dr. Sheshang Degadwala "Steering Angle Prediction Based on Road Direction using Convolution Neural Network (CNN)" International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 7, Issue 4, pp.88-95, July-August-2020. Available at doi : https://doi.org/10.32628/IJSRST207429