A Theoretical Study of Transport Property of Heterojunction and Evaluation of Electric Fields of The Space Charge Region and Energy Band of The Heterojunction Under Applied Bias Voltage
Keywords:
Heterojunction, Bias Voltage, Space Charge, Energy Band, Degree of freedomAbstract
This paper presents a theoretical study of transport property of heterojunction and evaluation of electric fields of the Space charge region and energy band of the heterojunction under applied bias voltage. The study exhibits a typical XRD pattern of a 500 thick LSMO film growing directly on the Si (001) substrate. The plane lattice parameter is about 5.43 A for Si. and about 3.86 A for LSMO. With the LSMO unit cell rotating 45 around the S surface normal (100) axis, the lattice mismatch between LSMO and Si is about 0.55 %. The small lattice mismatch allows a nearly epitaxial growth of LSMO on Si substrate. The study presents the experimental and theoretical results of I-V curves of the LSMO/Si heterostructure over the temperature range of 250-300 K. The solid, dashed, dotted lines represent the theoretical current-voltage characteristics at the temperature of 300 K, 275 K and 250 K respectively and the experimental data obtained at 300 K. 275 K and 250 K are denoted by solid squares, solid stars and solid triangles respectively The exponential data clearly present asymmetric f-V curves of the LSMO/Si heterojunction The theoretical calculation results show the currents increased rapidly with the increasing forward-bias voltages, which was in good agreement with the experimental data in the forward-bias case. The diversion between the calculation results and experimental results in the reverse-bias case is mainly due to the neglect of the leakage current and the tunneling current in the calculation.
References
- S. Jin et.al, Science 264, 413 (1994); R.V. Heemolt, Phys. Rev. Lett. (PRL) 71, 2331 (1993); J.D. Zhang et.al, Phys. Rev. Lett. (PRL) 86, 3823 (2001).
- C. Zener, Phys. Rev. 82, 403 (1951); A.J. Millis, Nature 392, 147 (1998).
- J.B. Goodenough and J.S. Zhou, Nature 386, 229 (1997); M. FAth et.al, Science 285, 1540 (1999); Q.L. Zhou et.al, Phys. Rev. B 72, 224439 (2005); Appl. Phys. Lett. 87, 172510 (2005).
- A.J. Millis, Phys. Rev. B 53, 8434 (1996); A.J. Millis et.al, Phys. Rev. Lett. (PRL) 74, 5144 (1995); P. Dai et.al, Phys. Rev. B 54, R3694 (1996).
- H.B. Lu et.al, Appl. Phys. Lett. 82, 032502 (2005); K.J. Jin et.al, Phys. Rev. B 71, 184428 (2005).
- H.B. Lu et.al, Appl Phys. Lett. 86, 241915 (2005).
- K. Lord et.al, Appl. Phys. Lett. 89, 052116 (2006).
- P.W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955); H. Tanaka, J. Zhang and T. Kawai, Phys. Rev. Lett. (PRL) 88, 027204 (2002); A.J. Millis, B.I. Shraiman and R. Mueller, Phys. Rev. Lett. (PRL) 77, 175 (1996).
- S.A. Chambers et.al., Appl. Phys. Lett. 77, 1662 (2000).
- Physics Report 493, 61-236 (2010).
Downloads
Published
Issue
Section
License
Copyright (c) IJSRST

This work is licensed under a Creative Commons Attribution 4.0 International License.