Second Order Nonlinear Optical Polarization at Different Wavelengths for Zinc-Blende Crystals

Authors

  • M. M. Tasnim  Department of Physics, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
  • K. N. Sakib  Department of Physics, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
  • J. Islam  Department of Physics, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh

DOI:

https://doi.org/10.32628/IJSRST218281

Keywords:

Second order nonlinear optical polarization, cw Ar-ion laser, zinc-blende crystals.

Abstract

Second order nonlinear optical polarization P(2) has been calculated theoretically for several crystals having zinc-blende symmetries. Three distinct wavelengths 457 nm, 488 nm and 514 nm emitted from a continuous wave (cw) Ar-ion laser have been considered for the estimation of the second order nonlinear optical polarization. The study reveals nonlinear dependence of the second order nonlinear optical polarization on the applied electric field intensities at various wavelengths.

References

  1. B. Qi, L. Huang, H Lo and L. Qian, Polarization insensitive phase modulator for quantum cryptosystems, Optics Express, Vol. 14, No. 10, pp 4264-4269, 2006.
  2. Z. Shang-Jian, L. R. Guo, C. De-Jun, L. Shuang and L. Yong, High-frequency characterization of an optical phase modulator with phase modulation to intensity modulation conversion in dispersive fibers, Chinese Science Bulletin, Vol. 27, No. 22,  2012.
  3. R. W. Terhune and D. A. Weinberger, Second harmonic generation in fibers, Journal  of  Optical Society of America B, Vol. 4, No. 5, pp 661-674, 1987.
  4. I. S. Ruddock, Nonlinear optical second harmonic generation, European Journal of Physics, Vol. 15, No. 53, pp 53-58, 1994.
  5. M. Fiebig, V. V. Pavlov and R. V. Pisarev, Second harmonic generation as a tool for studying electronic and magnetic structures of crystals: review, Journal of  Optical Society of America. B, Vol. 22, No. 1, pp 96-118, 2005.
  6. X. Chen, M. L. Clarke, J. Wang and Z. Chen, Sum frequency generation vibrational spectroscopy studies on molecular conformation and orientation of biological molecules at interfaces, International Journal of Modern Physics B, Vol. 19, No. 4, pp 691–713, 2005.
  7. Y. R. Shen, Revisiting the basic theory of sum frequency generation, Journal of Chemical Physics Vol. 153, No. 18, 2020.
  8. G. Deng, Y. Qian and Yi Rao, Development of ultrafast broadband electronic sum frequency generation for charge dynamics at surfaces and interfaces,  Journal of  Chemical Physics, Vol. 150, No. 2, 2019.
  9. E. Shwartz and S. Shwartz, Difference-frequency generation of optical radiation from two-color x-ray pulses, Optics Express, Vol. 23, No. 6, pp 7471-7480, 2015.
  10. P. Baldi, M. Sundheimer, K. El Hadi, M. P. de Micheli and D. B. Ostrowsky, Comparison Between Difference Frequency Generation and Parametric Fluorescence in Quasi Phase Matched Lithium Niobate Stripe Waveguides, IEEE Journal Of Selected Topics In Quantum Electronics, Vol. 2, No. 2, pp 385-395, 1996.
  11. Y. Wang, M. Ghotbi,  S. Das, Y. Dai, S. Li, X. Hu,  X. Gan, J. Zhao and Z. Sun, Dierence frequency generation in monolayer MoS2, Nanoscale, Vol. 12, No. 38, pp 19638–19643, 2020.
  12. M. Kauranen,  T. Verbiest, A. Persoons, Second order nonlinear optical signatures of surface chirality, Journal of Modern Optics, Vol. 45,  No. 2, pp 403-423, 1998.
  13. P. A. Franken, A. E. Hill, C. W. Peters and G. Weinreich, Generation of optical harmonics, Physical  Review Letters, Vol. 7, No. 4, pp 118-120, 1961.
  14. B. F. Levine and C. G. Bethea, Second and third order hyperpolarizabilities of organic molecules, Journal of Chemical Physics, Vol.  63, No. 6, pp 2666-2682, 1975.
  15. D. A. Kleinman, Nonlinear dielectric polarization in optical media, Physical Review, Vol. 126, No. 6, pp. 1977-1979, 1962.
  16. V. M. Geskin, C. Lambert and J. L. Breˊdas, Origin of high second and third order nonlinear optical response in ammonio/borato diphenylpolyene zwitterions: the remarkable role of polarized aromatic groups, Journal of American Chemical Society, Vol. 125, No. 50, pp 15651-15658,  2003.
  17. F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe and M. Kauranen, Surface and bulk contributions to the second-order nonlinear optical response of a gold film, Physical Review B, Vol. 80, No. 23, 233402-233405,  2009.
  18. D. E. Aspnes, Energy band theory of the second order nonlinear optical susceptibility of crystals of zinc-blende symmetry, Physical Review B, Vol. 6, No. 12, pp 4648-4659, 1972.
  19. J. A. Giordmain, Nonlinear optical properties of liquids, Physical Review, Vol. 138, No. 6A, A1599-1606, 1965.
  20. V. N. Mahajan, Uniform versus Gaussian beams: a comparison of the effects of diffraction, obscuration, and aberrations, Journal of Optical Society of  America,  Vol. 3, No. 4, pp 470-485, 1986.
  21. E. Zauderer, Complex argument Hermite-Gaussian and Laguerre-Gaussian beams, Journal of Optical Society of America, Vol. 3, No. 4, pp 465-469, 1986.
  22. R. Simon, E. C. G. Sudarshan and N. Mukunda, Gaussian Maxwell  beams, Journal of Optical Society America, Vol. 3, No.  4, pp 536-540, 1986.

Downloads

Published

2021-06-30

Issue

Section

Research Articles

How to Cite

[1]
M. M. Tasnim, K. N. Sakib, J. Islam "Second Order Nonlinear Optical Polarization at Different Wavelengths for Zinc-Blende Crystals" International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 8, Issue 3, pp.34-39, May-June-2021. Available at doi : https://doi.org/10.32628/IJSRST218281