A Review on Mn3O4 and Its Composite Nanomaterials of Diverse Morphologies as an Electrode Material in Supercapacitors

Authors

  • Tanaji S. Patil  Bhogawati Mahavidyalaya, Kurukali, Tal, Karveer, Dist, Kolhapur, Maharashtra, India
  • Satish A. Gangawane  Dhoodhsakhar Mahavidyalaya, Bidri, Tal, Kagal, Dist, Kolhapur, Maharashtra, India
  • Mansing V. Takale  Department of Physics, Shivaji University, Kolhapur, Maharashtra, India

Keywords:

Mn3O4 and its composite, Electrode material, Supercapacitors.

Abstract

Mn3O4 and its composite nanomaterials have become promising candidate as an electrode for supercapacitor devices, because of its low cost, non-toxicity, large abundance, high porosity and high capacitance values in aqueous electrolyte. Here, we systematically summarized the impact of different morphologies of Mn3O4 and its composite nanomaterials on supercapacitive performance. Many researchers synthesized various Mn3O4 and its composite nanomaterials of exceptional properties and different morphologies for energy storage. This article reviews recent efforts and developments in synthesis methods Mn3O4 and its composite nanomaterials as an electrode material in supercapacitor.

References

  1. X. Liu, C. Chen, 2013, Journal of Nanomaterials, (Feb.2013), http://dx.doi.org/10.1155/2013/736375,
  2. K. Zhang, X Han, 2012 Chemical Society Reviews (Jan. 2012), DOI: 10.1039/x0xx00000x
  3. W.Wei, X. Ciu, W. Chen, 2011, Chem. Soc. Rev., (Sept.2011), DOI: 10.1039/c0cs00127a.
  4. Z. sun, T. Liao,L. Kau, 2016, Sci China Mater (2017), https://doi.org/10.1007/s40843-016-5117-0
  5. A. Sukhdev M. Challa, L. Narayani, 2019, Heliyon 6 (2020) https://doi.org/10.1016/j.heliyon.2020.e03245
  6. Y. Kong,R. Jiao,2020 Nanomaterials (2020) , http://dx.doi.org/10.3390/nano10020367.
  7. X. Zhang, Z. Xing, Y. Yu 2011, CrystEngComm,( 2012), DOI: 10.1039/c1ce06289a.
  8. H. U. Shah F.Wang, 2016, Int. J. Electrochem. Sci., 11 (2016), doi: 10.20964/2016.10.41
  9. T. Ahmad, K. V. Ramanujacharyl 2004, J. Mater. Chem., (2004), http://doi.org/10.1039/B409010A
  10. A. Ullah, M. Akhtar,2017, Journal of Saudi Chemical Society (2017). http://dx.doi.org/10.1016/j.jscs.2017.03.008
  11. H. Dhaouadi Ouassim Ghodbane, 2011 ISRN Spectroscopy, (2012), doi:10.5402/2012/706398
  12. Y. Tan L. Meng, 2010, Chem. Commun., (2011) DOI: 10.1039/c0cc00978d.
  13. W. Wang, L. Ao, 2007, Crystal Growth & Design, (2008), 0.1021/cg070502p.
  14. B. Jhansi Rani, M. Ravina, G. Ravi, 2017.Surfaces and Interfaces, (2018), https://doi.org/10.1016/j.surfin.2018.02.007
  15. A. Ubale M.R. Belkhedkar,2012, Materials Chemistry and Physics 136 (2012), http://dx.doi.org/10.1016/j.matchemphys.2012.08.052
  16. A. M. Toufiq, F. Wang, 2014, Mater. Express (2014), doi:10.1166/mex.2014.1167
  17. H.K. Yang C.C. Chin, 2016 Nanomaterials (2016), doi:10.3390/nano6110203.
  18. H. L. Fei, C. Yang, 2018, JMSRR,,( 2018), DOI: 10.9734/JMSRR/2018/43347.
  19. H. Y. Xu, H.Wang, 2006, Applied Surface Science 252, (2006), doi:10.1016/j.apsusc.2005.06.011
  20. J. K. Sharma, P. Srivastava, 2016, Journal of Colloid and Interface Science (2016) doi: http:// dx.doi.org/10.1016/j.jcis.2016.03.052
  21. D. P. Dubal, D.S. Dhawale, 2009, Journal of Alloys and Compounds 484 (2009) dx.doi.org/10.1016/j.jallcom.2009.03.135.
  22. J. Du, Y. Gao, 2006 Nanotechnology, 17 (2006)
  23. http://dx.doi.org/10.1088/0957-4484/17/19/024
  24. Z. Yu, L. Tetard 2014, Energy Environ. Sci., (2015), DOI: 10.1039/c4ee03229b
  25. Y. Luo, T. Yang, 2016, Materials Letters, 178(2016), http://dx.doi.org/10.1016/j.matlet.2016.04.142 .
  26. K. V. sankar D. Kalpana, 2012, J Appl. Electrochem (2012) DOI 10.1007/s10800-012-0424-2
  27. J. W. Lee, A.S. Hall, 2011,Chem. Mater. (2012), dx.doi.org/10.1021/cm203697w.
  28. D. Li, F. Meng, 2013, Nanoscale Research Letters (2013), http://www.nanoscalereslett.com/content/8/1/535.
  29. R. Aswathy, M. Ulaganathan, P. Ragupathy, 2018, Journal of Alloys and Compounds (2018), doi: 10.1016/j.jallcom.2018.07.067.
  30. B. Wang, J. Park,2010, Electrochimica Acta 55 (2010) dx.doi.org/10.1016/j.electacta.2010.05.086
  31. H. U. Shah F.Wang, 2018 J. Nanosci. Nanotechnol., (2018), Vol. 18, doi:10.1166/jnn.2018.14644
  32. H. Jiang, T. Zhao, 2010, Nanoscale, (2010), DOI: 10.1039/c0nr00257g.
  33. R. Dong Q. Ye, 2013, ACS Appl. Mater. Interfaces (2013), dx.doi.org/10.1021/am402257y .
  34. D.P. Shaik, P.Rosaiah, 2016, Materials Today: Proceedings (2016), doi: 10.1016/j.matpr.2016.01.122 .
  35. Qu Jiangying, G. Feng,2012,, Nanoscale, RSC publishing, 2013. DOI: 10.1039/c3nr33700f
  36. B.G.S. Raj, A.M. Asiri,2015, Journal of Alloys and Compounds, (2015) http://dx.doi.org/http://dx.doi.org/10.1016/j.jallcom.2015.02.164
  37. D.P. Dubal D.S. Dhawale, 2010, Journal of Alloys and Compounds (2010). doi:10.1016/j.jallcom.2010.02.182
  38. Y. Xing, Z. Liu, 2017, Mater Sci: Mater Electron, (2017) DOI 10.1007/s10854-017-7010-7.
  39. G-r. Xu J-j. Sh, 2014, Journal of Alloys and Compounds (2015) http://dx.doi.org/http://dx.doi.org/10.1016/j.jallcom.2015.01.067 .
  40. K. Jang S. Lee, 2014 Bull. Korean Chem. Soc. (2014), Vol. 35 http://dx.doi.org/10.5012/bkcs.
  41. M. Zhu, R. Fu, Advanced Composites Letters, (2017), Vol. 26, Iss.1.
  42. Li Li, K. Seng, 2013 Electrochimica Acta, (2013), 87801-808 http://ro.uow.edu.au/eispapers/497.
  43. M. Aghazadeh, 2017, Anal. Bioanal. Electrochem. Vol. 10, No. 8, (2018), 961-973. Email:ganjali@khayam.ut.ac.ir
  44. Zhenjun Qi A. Younis, 2015, Nano-Micro Lett. (2015). DOI 10.1007/s40820-015-0074-0
  45. Chaofeng Liu, H. Song, 2015, Nano Research (2015), 8(10): 3372–3383. DOI 10.1007/s12274-015-0837-4
  46. D.P. Dubal, D.S. Dhawale,, 2010, Journal of Electroanalytical Chemistry 647 (2010) http://dx.doi.org/10.1016/j.jelechem.2010.05.010
  47. P. A. Shinde, V.C.Lokhande, International Journal of Engineering Research and Technology, (2017), ISSN 0974-3154 Volume 10, http://www.irphouse.com
  48. Y. Zhou L. Guo,2018, Materials( 2018), http://dx.doi.org/10.3390/ma11060881
  49. A.G. Naiknaware, J. Chavan, 2018,, Journal of Alloys and Compounds, (2018). DOI: https://doi.org/10.1016/j.jallcom.2018.10.001
  50. Q. Tian, X. Wang, 2017, Nanoscale Research Letters, (2017). 12:214. DOI 10.1186/s11671-017-1977-0
  51. S. Kulkarni, Dhanya Puthusserib,2016, Electrochimica Acta 231, 2017, 460–467. http://dx.doi.org/10.1016/j.electacta.2017.01.165
  52. Doo-Young Youn, Harry L. Tuller, Journal of the Electrochemical Society, 158 (8) A970-A975, (2011). DOI: 10.1149/1.3601852
  53. Abhijit A.Yadav S.N.Jadhav, 2016, Electrochimica Acta, (2016). http://dx.doi.org/10.1016/j.electacta.2016.04.096
  54. R. Tholkappiyan A. Nirmalesh Naveen, 2018, Journal of Taibah University for Science, (2018). https://doi.org/10.1080/16583655.2018.1497440
  55. Dadamiah PMD Shaik, Rosaiah Pitcheri, 2018, Ceramics International, (2018). https://doi.org/10.1016/j.ceramint.2018.10.135
  56. M. S. Yadav, 2020, Journal of Energy Storage, (2020), https://doi.org/10.1016/j.est.2019.101079 .
  57. R. Ranjithkumar S. Ezhil Arasi, 2020 Superlattices and Microstructures, (2020) https://doi.org/10.1016/j.spmi.2019.106380 .
  58. Nan Zhao H. Fan,2020, Nano Energy, (2020). https://doi.org/10.1016/j.nanoen.2020.104.626
  59. Y. Zhu Y. Feng, Energy Fuels, (2020), https://doi.org/10.1016/j.jpowsour.2020.227775

Downloads

Published

2021-04-30

Issue

Section

Research Articles

How to Cite

[1]
Tanaji S. Patil, Satish A. Gangawane, Mansing V. Takale "A Review on Mn3O4 and Its Composite Nanomaterials of Diverse Morphologies as an Electrode Material in Supercapacitors" International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 8, Issue 2, pp.520-526, March-April-2021.