Virus Nanoparticles & Different Nanoparticles Affect Lung Cancer- A New Approach

Authors

  • Ranajit Nath  Department of Pharmaceutics, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata, West Bengal, India
  • Ratna Roy  Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata, West Bengal, India
  • Soubhik bhattacharyya  Department of Pharmaceutics, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata, West Bengal, India
  • Sourav Datta  Department of Pharmaceutics, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata, West Bengal, India

DOI:

https://doi.org/10.32628/IJSRST2183189

Keywords:

Lung Cancer, Pathogenesis, Virus Nanoparticles, Nanoparticles, Treatment

Abstract

In the past, few decades cancer has become a worldwide problem to mankind. Lung cancer is the most life-threatening among all cancer types. Non-small cell lung cancer (NSCLC) is the main reason for approximately 80% to 90% of deaths. Lack of early detection and incompetent conventional therapies is the leading cause for poor prognosis and overall survival rate of lung cancer patients. Immense progress in the field of nanotechnology and nanomedicine has given inspiration to the development of an alternative strategy in the treatment of lung cancer. The unique physicochemical properties of the nanoparticles likeability to cross the different biological barriers, effectiveness in delivering hydrophobic drugs which are difficult to incorporate in the body, and targeting in the particular disease sites have given rise to enormous advantages for nanoparticulate systems for the early diagnosis and active delivery of drugs for a better treatment for lung cancer. Recently, many formulations of nanocarriers like lipid-based, polymeric and branched polymeric, metal-based, magnetic, and mesoporous silica are being used in this treatment. Innovative strategies have been employed to utilize the multicomponent, three-dimensional structure of nanoparticles and modify it and construct a new structure moiety that has multifunctional capabilities. Developing such designs permits simultaneous drug delivery of chemotherapeutics as well as anticancer gene therapies to site-specific targets. In lung cancer, nanoparticle-based therapeutics is now breaking the ground in the diagnosis, imaging, screening, and treatment of primary and metastatic tumors. This review emphasizes the pathogenesis of lung cancer and its treatment by nanotechnology.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394–424.
  2. Cooper WA, Lam DCL, O’Toole SA, Minna JD. Molecular biology of lung cancer. J Thorac Dis 2013;5(SUPPL.5):703–40.
  3. Sivarajakumar R, Mallukaraj D, Kadavakollu M, Neelakandan N, Chandran S, Bhojaraj S, m.fl. Nanoparticles for the treatment of lung cancers. J Young Pharm 2018;10(3):276–81.
  4. Pollack A, Komaki R, Cox JD, Ro JY, Oswald MJ, Shin DM, m.fl. Thymoma: Treatment and prognosis. Int J Radiat Oncol Biol Phys 1992;23(5):1037–43.
  5. Inamura K. Lung cancer: understanding its molecular pathology and the 2015 wHO classification. Front Oncol 2017;7(AUG):1–7.
  6. Noguchi M, Morikawa A, Kawasaki M, Matsuno Y, Yamada T, Hirohashi S, m.fl. Small adenocarcinoma of the lung. Histologic characteristics and prognosis. Cancer 1995;75(12):2844–52.
  7. Yoshizawa A, Motoi N, Riely GJ, Sima CS, Gerald WL, Kris MG, m.fl. Impact of proposed IASLC/ATS/ERS classification of lung adenocarcinoma: Prognostic subgroups and implications for further revision of staging based on analysis of 514 stage i cases. Mod Pathol 2011;24(5):653–64.
  8. Yim J, Zhu LC, Chiriboga L, Watson HN, Goldberg JD, Moreira AL. Histologic features are important prognostic indicators in early stages lung adenocarcinomas. Mod Pathol 2007;20(2):233–41.
  9. Travis WD. Pathology of Lung Cancer. Clin Chest Med [Internet] 2011;32(4):669–92. Available from: http://dx.doi.org/10.1016/j.ccm.2011.08.005
  10. Miyoshi T, Satoh Y, Okumura S, Nakagawa K, Shirakusa T, Tsuchiya E, m.fl. Early-stage lung adenocarcinomas with a micropapillary pattern, a distinct pathologic marker for a significantly poor prognosis. Am J Surg Pathol 2003;27(1):101–9.
  11. Tsutsumida H, Nomoto M, Goto M, Kitajima S, Kubota I, Hirotsu Y, m.fl. A micropapillary pattern is predictive of a poor prognosis in lung adenocarcinoma, and reduced surfactant apoprotein A expression in the micropapillary pattern is an excellent indicator of a poor prognosis. Mod Pathol 2007;20(6):638–47.
  12. Tomashefski JFJ, Connors AFJ, Rosenthal ES, Hsiue IL. Peripheral vs central squamous cell carcinoma of the lung. A comparison of clinical features, histopathology, and survival. Arch Pathol Lab Med 1990;114(5):468–74.
  13. Travis W, Colby T V, Corrin B, Shimosato Y, Brambilla E. Histological Typing of Lung and Pleural Tumors. WHO International Histological Classification of Tumour. 1999;
  14. Sung YE, Cho U, Lee KY. Peripheral type squamous cell carcinoma of the lung: Clinicopathologic characteristics in comparison to the central type. J Pathol Transl Med 2020;54(4):290–9.
  15. Carlile A, Edwards C. Poorly differentiated squamous carcinoma of the bronchus: A light and electron microscopic study. J Clin Pathol 1986;39(3):284–92.
  16. Melamed MR, Zaman MB, Flehinger BJ, Martini N. Radiologically occult in situ and incipient invasive epidermoid lung cancer: detection by sputum cytology in a survey of asymptomatic cigarette smokers. Am J Surg Pathol 1977;1(1):5–16.
  17. Churg A, Johnston WH, Stulbarg M. Small cell squamous and mixed small cell squamous-small cell anaplastic carcinomas of the lung. Am J Surg Pathol 1980;4(3):255–63.
  18. Dulmet-Brender E, Jaubert F, Huchon G. Exophytic endobronchial epidermoid carcinoma. Cancer 1986;57(7):1358–64.
  19. SHERWIN RP, LAFORET EG, STRIEDER JW. Exophytic endobronchial carcinoma. J Thorac Cardiovasc Surg 1962;43:716–30.
  20. Funai K, Yokose T, Ishii G, Araki K, Yoshida J, Nishimura M, m.fl. Clinicopathologic characteristics of peripheral squamous cell carcinoma of the lung. Am J Surg Pathol 2003;27(7):978–84.
  21. Maeshima AM, Maeshima A, Asamura H, Matsuno Y. Histologic prognostic factors for small-sized squamous cell carcinomas of the peripheral lung. Lung Cancer 2006;52(1):53–8.
  22. Watanabe Y, Yokose T, Sakuma Y, Hasegawa C, Saito H, Yamada K, m.fl. Alveolar space filling ratio as a favorable prognostic factor in small peripheral squamous cell carcinoma of the lung. Lung Cancer 2011;73(2):217–21.
  23. Travis WD. Advances in neuroendocrine lung tumors. Ann Oncol [Internet] 2010;21(SUPPL. 7):vii65–71. Available from: https://doi.org/10.1093/annonc/mdq380
  24. Nicholson SA, Beasley MB, Brambilla E, Hasleton PS, Colby T V., Sheppard MN, m.fl. Small cell lung carcinoma (SCLC): A clinicopathologic study of 100 cases with surgical specimens. Am J Surg Pathol 2002;26(9):1184–97.
  25. Kreisman H, Wolkove N, Quoix E. Small cell lung cancer presenting as a solitary pulmonary nodule. Chest 1992;101(1):225–31.
  26. Gephardt GN, Grady KJ, Ahmad M, Tubbs RR, Mehta AC, Shepard K V. Peripheral small cell undifferentiated carcinoma of the lung. Clinicopathologic features of 17 cases. Cancer 1988;61(5):1002–8.
  27. Hirsch FR, Matthews MJ, Aisner S, Campobasso O, Elema JD, Gazdar AF, m.fl. Histopathologic classification of small cell lung cancer. Changing concepts and terminology. Cancer 1988;62(5):973–7.
  28. Fraire AE, Johnson EH, Yesner R, Zhang XB, Spjut HJ, Greenberg SD. Prognostic significance of histopathologic subtype and stage in small cell lung cancer. Hum Pathol 1992;23(5):520–8.
  29. Travis WD, Brambilla E, Müller-Hermelink HK, Harris CC eds. Pathology & Genetics of Tumours of the Lung, Pleura, Thymus and Heart. IARC/Press 2004;344.
  30. AZZOPARDI JG. Oat-cell carcinoma of the bronchus. J Pathol Bacteriol 1959;78:513–9.
  31. Bégin P, Sahai S, Wang NS. Giant cell formation in small cell carcinoma of the lung. Cancer 1983;52(10):1875–9.
  32. Bepler G, Neumann K, Holle R, Havemann K, Kalbfleisch H. Clinical relevance of histologic subtyping in small cell lung cancer. Cancer 1989;64(1):74–9.
  33. Hecht SS. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer 2003;3(10):733–44.
  34. Hecht SS. Tobacco smoke carcinogens and lung cancer. Curr Cancer Res 2011;6(14):53–74.
  35. Sato M, Sekido Y, Horio Y, Takahashi M, Saito H, Minna JD, m.fl. Infrequent mutation of the hBUB1 and hBUBR1 genes in human lung cancer. Jpn J Cancer Res 2000;91(5):504–9.
  36. Amos CI, Xu W, Spitz MR. Is there a genetic basis for lung cancer susceptibility? Recent results cancer Res Fortschritte der Krebsforsch Prog dans les Rech sur le cancer 1999;151:3–12.
  37. Caporaso NE. Why have we failed to find the low penetrance genetic constituents of common cancers? Cancer Epidemiol Biomarkers Prev 2002;11(12):1544–9.
  38. Paz-Elizur T, Krupsky M, Blumenstein S, Elinger D, Schechtman E, Livneh Z. DNA repair activity for oxidative damage and risk of lung cancer. J Natl Cancer Inst 2003;95(17):1312–9.
  39. Bailey-Wilson JE, Amos CI, Pinney SM, Petersen GM, De Andrade M, Wiest JS, m.fl. A major lung cancer susceptibility locus maps to chromosome 6q23-25. Am J Hum Genet 2004;75(3):460–74.
  40. Smith LT, Lin M, Brena RM, Lang JC, Schuller DE, Otterson GA, m.fl. Epigenetic regulation of the tumor suppressor gene TCF21 on 6q23-q24 in lung and head and neck cancer. Proc Natl Acad Sci U S A 2006;103(4):982–7.
  41. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998;396(6712):643–9.
  42. Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JKV, Markowitz SD, m.fl. Mutations of mitotic checkpoint genes in human cancers. Nature 1998;392(6673):300–3.
  43. Perucho M, Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Burr RW, m.fl. Correspondence re: C. R. Boland et al., A National Cancer Institute Workshop on Microsatellite Instability for Cancer Detection and Familial Predisposition: Development of International Criteria for the Determination of Microsatellite Instability in Color. Cancer Res 1999;59(1):249–56.
  44. Sozzi G, Musso K, Ratcliffe C, Goldstraw P, Pierotti MA, Pastorino U. Detection of microsatellite alterations in plasma DNA of non-small cell lung cancer patients: A prospect for early diagnosis. Clin Cancer Res 1999;5(10):2689–92.
  45. Weinstein IB, Joe A. Oncogene addiction. Cancer Res 2008;68(9):3077–80.
  46. Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science (80- ) 2004;305(5687):1163–7.
  47. CALABRO F, STERNBERG CN. Cancer and its Management. BJU Int 2006;97(3):651–651.
  48. Gedda MR, Madhukar P, Vishwakarma AK, Verma V, Kushwaha AK, Yadagiri G, m.fl. Evaluation of Safety and Antileishmanial Efficacy of Amine Functionalized Carbon-Based Composite Nanoparticle Appended With Amphotericin B: An in vitro and Preclinical Study. Front Chem 2020;8.
  49. Jakopovic M, Thomas A, Balasubramaniam S, Schrump D, Giaccone G, Bates SE. Targeting the epigenome in lung cancer: Expanding approaches to epigenetic therapy. Front Oncol 2013;3 OCT(October):1–12.
  50. Herbst RS, Heymach J V., Lippman SM. Molecular origins of cancer: Lung cancer. N Engl J Med 2008;359(13):1367–80.
  51. The World Health Organization histological typing of lung tumours. Second edition. Am J Clin Pathol 1982;77(2):123–36.
  52. Mustafa M, Azizi AJ, IIIzam E, Nazirah A, Sharifa S, Abbas S. Lung Cancer: Risk Factors, Management, And Prognosis. IOSR J Dent Med Sci 2016;15(10):94–101.
  53. Mulvihill MS, Kratz JR, Pham P, Jablons DM, He B. The role of stem cells in airway repair: Implications for the origins of lung cancer. Chin J Cancer 2013;32(2):71–4.
  54. Harrison H, Holm J. No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title. 1995;246(19950101):1–70.
  55. Powell CA, Halmos B, Nana-Sinkam SP. Update in lung cancer and mesothelioma 2012. Am J Respir Crit Care Med 2013;188(2):157–66.
  56. Samson M, Porter N, Orekoya O, Hebert JR, Adams SA, Bennett CL, m.fl. Recent Advances in Nanotechnology for Diabetes Treatment Rocco. 2017;155(1):3–12.
  57. Matsumura Y, Maeda H. A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res 1986;46(8):6387–92.
  58. Mukherjee A, Paul M, Mukherjee S. Recent Progress in the Theranostics Application of Nanomedicine in Lung Cancer. Cancers (Basel) 2019;11(5).
  59. Bandyopadhyay A, Das T, Yeasmin S. Nanoparticles in Lung Cancer Therapy - Recent Trends [Internet]. 2015. Available from: http://link.springer.com/10.1007/978-81-322-2175-3
  60. Babu A, Templeton AK, Munshi A, Ramesh R. Nanoparticle-based drug delivery for therapy of lung cancer: Progress and challenges. J Nanomater 2013;2013(December 2015).
  61. Lee WH, Loo CY, Traini D, Young PM. Inhalation of nanoparticle-based drug for lung cancer treatment: Advantages and challenges. Asian J Pharm Sci [Internet] 2015;10(6):481–9. Available from: http://dx.doi.org/10.1016/j.ajps.2015.08.009
  62. Cormode DP, Jarzyna PA, Mulder WJM, Fayad ZA. Modified natural nanoparticles as contrast agents for medical imaging. Adv Drug Deliv Rev 2010;62(3):329–38.
  63. Pokorski JK, Steinmetz NF. The art of engineering viral nanoparticles. Mol Pharm 2011;8(1):29–43.
  64. Rani D, Somasundaram VH, Nair S, Koyakutty M. Advances in cancer nanomedicine. J Indian Inst Sci 2012;92(2):187–218.
  65. Blum AS, Soto CM, Wilson CD, Cole JD, Kim M, Gnade B, m.fl. Cowpea Mosaic Virus as a Scaffold for 3-D Patterning of Gold Nanoparticles. Nano Lett [Internet] 2004;4(5):867–70. Available from: https://doi.org/10.1021/nl0497474
  66. Boulikas T. Low toxicity and anticancer activity of a novel liposomal cisplatin (Lipoplatin) in mouse xenografts. Oncol Rep 2004;12(1):3–12.
  67. Boulikas T. Clinical overview on LipoplatinTM: A successful liposomal formulation of cisplatin. Expert Opin Investig Drugs 2009;18(8):1197–218.
  68. Krishnamachari Y, Geary SM, Lemke CD, Salem AK. Nanoparticle delivery systems in cancer vaccines. Pharm Res 2011;28(2):215–36.
  69. Barthelemy P, Laforêt JP, Farah N, Joachim J. Compritol® 888 ATO: An innovative hot-melt coating agent for prolonged-release drug formulations. Eur J Pharm Biopharm 1999;47(1):87–90.
  70. Zou Y, Zong G, Ling YH, Hao MM, Lozano G, Hong WK, m.fl. Effective treatment of early endobronchial cancer with regional administration of liposome-p53 complexes. J Natl Cancer Inst 1998;90(15):1130–7.
  71. Choi SH, Jin SE, Lee MK, Lim SJ, Park JS, Kim BG, m.fl. Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells. Eur J Pharm Biopharm 2008;68(3):545–54.
  72. Boca SC, Potara M, Gabudean AM, Juhem A, Baldeck PL, Astilean S. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Lett 2011;311(2):131–40.
  73. Galbiati A, Tabolacci C, Morozzo Della Rocca B, Mattioli P, Beninati S, Paradossi G, m.fl. Targeting tumor cells through chitosan-folate modified microcapsules loaded with camptothecin. Bioconjug Chem 2011;22(6):1066–72.
  74. Ventura CA, Cannavà C, Stancanelli R, Paolino D, Cosco D, La Mantia A, m.fl. Gemcitabine-loaded chitosan microspheres. Characterization and biological in vitro evaluation. Biomed Microdevices 2011;13(5):799–807.
  75. Lv PP, Wei W, Yue H, Yang TY, Wang LY, Ma GH. Porous quaternized chitosan nanoparticles containing paclitaxel nanocrystals improved therapeutic efficacy in non-small-cell lung cancer after oral administration. Biomacromolecules 2011;12(12):4230–9.
  76. Okamoto H, Nishida S, Todo H, Sakakura Y, Iida K, Danjo K. Pulmonary Gene Delivery by Chitosan–pDNA Complex Powder Prepared by a Supercritical Carbon Dioxide Process. J Pharm Sci [Internet] 2003;92(2):371–80. Available from: https://doi.org/10.1002/jps.10285
  77. Jung J, Park SJ, Chung HK, Kang HW, Lee SW, Seo MH, m.fl. Polymeric nanoparticles containing taxanes enhance chemoradiotherapeutic efficacy in non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2012;84(1):22795728.
  78. Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, m.fl. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 2005;436(7050):568–72.
  79. Jere D, Jiang HL, Kim YK, Arote R, Choi YJ, Yun CH, m.fl. Chitosan-graft-polyethylenimine for Akt1 siRNA delivery to lung cancer cells. Int J Pharm 2009;378(1–2):194–200.
  80. Benfer M, Kissel T. Cellular uptake mechanism and knockdown activity of siRNA-loaded biodegradable DEAPA-PVA-g-PLGA nanoparticles. Eur J Pharm Biopharm 2012;80(2):247–56.
  81. Wang F, Li C, Cheng J, Yuan Z. Recent advances on inorganic nanoparticle-based cancer therapeutic agents. Int J Environ Res Public Health 2016;13(12).

Downloads

Published

2021-06-30

Issue

Section

Research Articles

How to Cite

[1]
Ranajit Nath, Ratna Roy, Soubhik bhattacharyya, Sourav Datta "Virus Nanoparticles & Different Nanoparticles Affect Lung Cancer- A New Approach" International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 8, Issue 3, pp.867-884, May-June-2021. Available at doi : https://doi.org/10.32628/IJSRST2183189