Influence of Cu Doping on Physical Properties of Nanocrystalline Spray Deposited Zinc Oxide Thin Films

Authors

  • S. G. Ibrahim  Department of Engineering Physics, Prof. Ram Meghe College of Engineering and Management, Badnera, Maharashtra, India
  • A. V. Kadu  Department of Engineering Chemistry, Prof. Ram Meghe College of Engineering and Management, Badnera, Maharashtra, India
  • P. H. Salame  Department of Physics, Institute of Chemical Technology, Mumbai, India
  • S. A. Waghuley  Department of Physics, Sant Gadge Baba Amravati University, Amravati, Maharashtra, India

DOI:

https://doi.org//10.32628/IJSRST2184107

Keywords:

Thin films, Nanostructures, Structural properties, Optical properties, Electrical properties.

Abstract

Nanotechnology is critical in today's world of technology and research. Structures are becoming more miniature in every field, which reduces circuit size and cost while also increasing working efficiencies. In the present research work, the influence of Cu doping on physical properties of nanocrystalline spray deposited zinc oxide thin films were studied. The structural and morphological investigations revealed that, the films are nanocrystalline in nature with pure hexagonal lattice and mixed cubic lattices and exhibits direct band gap of the order of 3.32 eV which decreases to 2.52 eV with increase in doping concentration. The electrical resistivity of the pristine films was found to be 3.81×10-1Ωcm which decrease to 4.80×10-2Ωcm with higher Cu doping. The thermo-emf measurement confirms that both undoped and doped thin films own n-type conductivity.

References

  1. L. Zhu, W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: A review, Sens. Actuators, A267 (2017) 242–261, https://doi.org/10.1016/j.sna.2017.10.021.
  2. N. Izyumskaya, A. Tahira, Z.H. Ibupoto, N. Lewinski, V. Avrutin, Ü. Özgür, et al., Review—electrochemical biosensors based on ZnO nanostructures, ECS J. State Sci.Technol. 6 (8) (2017) Q84–Q100, https://doi.org/10.1149/2.0291708jss
  3. X. He, J.E. Yoo, M.H. Lee, J. Bae, Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires, Nanotechnology 28 (24) (2017) 245402, https://doi.org/10.1088/1361-6528/aa6bca.
  4. S.S. Mousavi, B. Sajad, M.H. Majlesara, Fast response ZnO/PVA nanocompositebased photodiodes modified by graphene quantum dots, Mater. Des. 162 (2019) 249–255, https://doi.org/10.1016/j.matdes.2018.11.037.g
  5. A.K.K. Kyaw, X.W. Sun, C.Y. Jiang, G.Q. Lo, D.W. Zhao, D.L. Kwong, An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer, Appl. Phys. Lett. 93 (22) (2008), 221107, https://doi.org/10.1063/1.3039076.
  6. J.C. Wang, W.T. Weng, M.Y. Tsai, M.K. Lee, S.F. Horng, T.P. Perng, C.C. Kei, C.C. Yu, H.F. Meng, Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer, J. Mater. Chem. 20 (5) (2010)862– 866, https://doi.org/10.1039/B921396A.
  7. R. Vittal, Ho. Kuo-Chuan, Zinc oxide-based dye-sensitized solar cells: A review, Renewable Sustainable Energy Rev. 70 (2017) 920–935, https://doi.org/10.1016/j.rser.2016.11.273
  8. J. Luo, Y. Wang, Q. Zhang, Progress in perovskite solar cells based on ZnO nanostructures, Sol. Energy 163 (2018) 289–306, https://doi.org/10.1016/j.solener.2018.01.035.
  9. L. Zhu, L. Wang, F. Xue, L. Chen, J. Fu, X. Feng, et al., Piezo-phototronic effectenhanced flexible solar cells based on n-ZnO/p-SnS core-shell nanowire array, Adv. Sci. 4 (1) (2017) 1600185, https://doi.org/10.1002/advs.201600185.
  10. G. Zhu, G. Shulin, S. Zhu, S. Huang, G. Ran, J. Ye, Y. Zheng, Optimization study of metal–organic chemical vapor deposition of ZnO on sapphire substrate. J. Cryst. Growth. 349, 6–11 (2012)
  11. S.J. Jiao, Y.M. Lu, D.Z. Shen, Z.Z. Zhang, B.H. Li, ZhH Zheng, B. Yao, J.Y. Zhang, D. Zhao, X.W. Fan, Donor–acceptor pair luminescence of nitrogen doping p–type ZnO by plasma assisted molecular beam epitaxy. J. Lumines. 122(123), 368–370 (2007)
  12. X.C. Wang, X.M. Chen, B.H. Yang, Microstructure and optical properties of polycrystalline ZnO films sputtered under different oxygen flow rates. J. Alloys. Comp. 488, 232–237 (2009)
  13. S. Aksay, Y. Caglar, S. Ilican, M. Caglar, Sol–gel derived zinc oxide films: effect of deposition parameters on structure, microstructure and photoluminescence properties. Superlattices Microstruct., 50, 470–479 (2011)
  14. ChY Tsay, KSh Fan, ChM Lei, Synthesis and characterization of sol–gel derived gallium–doped zinc oxide thin films. J. Alloys. Comput. 512, 216–222 (2012)
  15. Y. Caglar, S. Aksoy, S. Ilican, M. Caglar, Crystalline structure and morphological properties of undoped and Sn doped ZnO thin films. Superlattices. Microstruct. 46, 469–475 (2009)
  16. Ibrahim SG, Ubale AU (2014) Structural, electrical and optical properties of nanostructured Cd1-xFexS thin films deposited by chemical spray pyrolysis technique, J. Mol. Struct. (1076):291–298
  17. Bates CW, Nelson KF, Raza SA (1982) Spray pyrolysis and heat treatment of CuInSe2 for photovoltaic applications, Thin Solid Films, 88(3):279–283
  18. Ibrahim SG, Ubale AU (2015) Structural, electrical and optical properties of nanocrystalline Cd1-xFexSe thin films deposited by chemical spray technique, J. Saudi Chem. Soc. (19):667–675

Downloads

Published

2021-08-30

Issue

Section

Research Articles

How to Cite

[1]
S. G. Ibrahim, A. V. Kadu, P. H. Salame, S. A. Waghuley, " Influence of Cu Doping on Physical Properties of Nanocrystalline Spray Deposited Zinc Oxide Thin Films , International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 8, Issue 4, pp.662-667, July-August-2021. Available at doi : https://doi.org/10.32628/IJSRST2184107