Novel Properties of Semiconductor Nanowires
DOI:
https://doi.org/10.32628/IJSRST218552Keywords:
Semiconductor, Nanowires and Properties of NanowiresAbstract
Semiconductor nanowires guarantee to give the structure squares to another age of nanoscale electronic and optoelectronic gadgets and display novel electronic and optical properties inferable from their special underlying one-dimensionality and conceivable quantum confinement impacts in two measurements. With an expansive choice of creations and band structures, these one-dimensional semiconductor nanostructures are viewed as the basic segments in a wide scope of potential nanoscale device applications. This review paper explains the basic properties showed by semiconductor nanowires. Novel properties including nanowire miniature hole lasing, phonon transport, interfacial security, and synthetic detecting are reviewed.
References
- Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, C. Bell, and C. M. Lieber, (2004) Controlled Growth and Structures of Molecular-Scale Silicon Nanowires, Nano Letter 4, 433.
- H. Lu, J. Li, R. A. Loomis, L. M. Wang, and W. E Buhro, (2003) Two-versus three-dimensional quantum confinement in indium phosphide wires and dots, Nat. Mater. 2, 517.
- J. Schiotz and K. W. Jacobsen, (2003) A maximum in the strength of nanocrystalline copper, Science, 301, 1357.
- H. Ch. Weissker, J. Furthmuller, and F. Bechstedt, (2002) Structure- and spin-dependent excitation energies and lifetimes of Si and Ge nanocrystals from ab initio calculations, Phys. Rev. B, 65, 155327.
- D. Erts, B. Polyakov, B. Daly, M. A. Morris, S. Ellingboes, J. Boland, J. D Holmes, (2006) High‐Density Arrays of Germanium Nanowire Photoresistors, J. Phys. Chem. B, 110, 820.
- L. Pizzagalli, G. Giulia, J. E. Klepeis, and F. Gygi, (2001) Structure and stability of germanium nanoparticles, Phys. Rev. B 63, 165324.
- T. V. Torchynska, G. Polupan, J. P. Gomez and A.V. Kolobov, (2003) Microelectronics Journal, 34, 541.
- Yu H, Li J, Loomis RA, Wang L-W, Buhro WE. (2003) Two- versus three-dimensional quantum confinement in indium phosphide wires and dots. Nat. Mater, 2, 517- 20.
- Murray CB, Kagan CR, Bawendi MG. (2000) Synthesis and characterization of monodisperse nanocrystals and close packed nanocrystal assemblies. Annu. Rev. Mater. Sci., 30, 545-610.
- Li L-S, Hu J, Yang W, Alivisatos PA. (2001) Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett., 1, 349-51.
- Kan S, Mokari T, Rothenberg E, Banin U. (2003) Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods. Nat.Mater. 2, 155-58.
- Gudiksen MS, Wang J, Lieber CM. (2002) Size-dependent photoluminescence from single indium phosphide nanowires. J. Phys. Chem. B, 106, 4036-39.
- Wang J, Gudiksen MS, Duan X, Cui Y, Lieber CM. (2001) Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science, 293, 1455-57.
- Qi J, Belcher AM, White JM. (2003) Spectroscopy of individual silicon nanowires. Appl. Phys. Lett. 82, 2616-18.
- Manna L, Milliron D J, Meisel A, Scher E C, Alivisatos A P. (2003) Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater 2, 382-85.
- Park, WI, Yi G-C, Kim M, Pennycook SJ. (2003) Quantum Confinement Observed inZnO/ZnMgO Nanorod heterostructures. Adv. Mater. 15, 526-29.
- Choi H-J, Johnson JC, He R, Lee S-K, Kim F, et al. (2003) Self-organized GaN quantum wire UV lasers. J. Phys. Chem. B, 107, 8721-25.
- M. A. Rafiq, (2018) Carrier transport mechanisms in semiconductor nanostructures and devices, Journal of Semiconductors, 39(6), 1-13.
- R. Rurali, (2010) Colloquium: Structural, electronic, and transport properties of Si nanowires, Reviews of Modern Physics, 82, 427.
- J. I. Hahm and C. M. Lieber, (2004) Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nano sensors, Nano Letters, 4(1), 51.
- Meller A, Nivon L, Brandin E, Golovchenko J, Branton D. (2000) Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl. Acad. Sci. USA 97, 1079-84.
- Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko J. (2001) Ion-beam sculpting at nanometer length scales. Nature 412, 166-69.
- Daiguji H, Yang P, Majumdar A. (2004) Ion transport in nanofluidic channels. Nano Lett. 4, 137-142
- Schiotz J, Jacobsen KW. (2003) A maximum in the strength of nanocrystalline copper. Science 301, 1357-59.
- Buffat P, Borel J-P. (1976) Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287-98.
- G‹ulseren O, Ercolessi F, Tosatti E. (1995) Pre-melting of thin wires. Phys. Rev. B 51, 7377-80.
- Schmidt M, Kusche R, von Issendorff B, Haberland H. (1998) Irregular variations in the melting point of size-selected atomic clusters. Nature 393, 238-40.
- Y. Li, R. Clady, J. Park, S. V. Thombare, T. W. Schmidt, M. L. Brongersma and P. C. McIntyre, (2014) Ultrafast electron and phonon response of oriented and diameter-controlled germanium nanowire arrays, Nano Lett., 14, 3427-3431.
- Po-Yu Yang, Shin-Pon Ju, Zhu-Min Lai, Jin-Yuan Hsieh, and Jennsen Lin, (2016) The mechanical properties and thermal stability of ultrathin germanium nanowires, RSC Advances, 105713-105722.
- Christenson HK. (2001) Confinement effects on freezing and melting. J. Phys. Condens. Matter, 13, 95-133.
- Wong WW, Sheehan PE, Lieber CM. (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 277, 1971-75.
- Zhang HF, Wang CM, Buck EC, Wang LS. (2003) Synthesis, characterization, and manipulation of helical SiO nano springs. Nano Lett. 3, 577-80.
- Lavrik NV, Datskos PG. (2003) Femtogram mass detection using photothermally actuated nanomechanical resonators. Appl. Phys. Lett. 82, 2697-99.
- Johnson JC, Yan H, Yang P, Saykally RJ. (2003) Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B 107, 8816-28.
- Duan X, Huang Y, Agarwai R, Lieber CM. (2003) Single-nanowire electrically driven lasers. Nature 421, 241-45.
- Zou J, Balandin A. (2001) Phonon heat conduction in a semiconductor nanowire. J. Appl. Phys. 89, 2932-38.
- L‹u X, Chu JH, Shen WZ. (2003) Modification of the lattice thermal conductivity in semiconductor rectangular nanowires. J. Appl. Phys. 93, 1219-29.
- Hicks LD, Dresselhaus MS. (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727-31.
- Martin-Gonzalez M, Snyder GJ, Prieto AL, Gronsky R, Sands T, Stacy AM. (2003) Direct electrodeposition of highly dense 50 nm Bi 2Se3-yTe nanowire arrays. Nano Lett. 3, 973-77.
- Prieto AL, Martin-Gonzalez M, Kenayi J, Gronsky R, Sands T, Stacy AM. (2003) The electrodeposition of high-density, ordered arrays of BiSb nanowires. J. Am. Chem. Soc. 125, 2388-89.
- Schwab K, Henriksen EA, Worlock JM, Roukes ML. (2000) Measurement of the quantum of thermal conductance. Nature 404, 974-77.
- Fon W, Schwab KC, Worlock JM, Roukes ML. (2002) Phonon scattering mechanisms in suspended nanostructures from 4 to 40 K. Phys. Rev. B 66, 045302.
- Kind H, Yan H, Law M, Messer B, Yang P. (2002) Nanowire UV photodetectors and optical switches. Adv. Mater. 14, 158-60.
- Law M, Kind H, Kim F, Messer B, Yang P. (2002) NO photochemical sensing with SnO nanoribbons at room temperature. Angew. Chem. Int. Ed. 41, 2405-8.
- Li C, Zhang D, Liu X, Han S, Tang T, Han J, Zhou C. (2003) In O nanowires as chemical sensors. Appl. Phys. Lett. 82, 1613-15.
- Comini E, Faglia G, Sberveglieri G, Pan Z, Wang ZL. (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869-71.
- Varghese OK, Gong D, Paulose M, Ong KG, Dickey EC, Grimes CA. (2003) Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 15, 624-27.
- Kolmakov A, Zhang Y, Cheng G, Moskovits M. (2003) Detection of CO and Ousting tin oxide nanowire sensors. Adv. Mater. 15, 997-1000.
- Favier F, Walter EC, Zach MP, Benter T, Penner RM. (2001) Hydrogen sensors and switches from electrodeposited palladium microwire arrays. Science 293, 2227-31.
- Li CZ, He X, Bogozi A, Bunch JS, Tao NJ. (2000) Molecular detection based on conductance quantization of nanowires. Appl. Phys. Lett. 76, 1333-35.
- Cui Y, Wei Q, Park H, Lieber CM. (2001) Nanowire nano sensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289-92.
- Gambardella P, Rusponi S, Veronese M, Dhesi SS, Grazioli C, et al. 2003. Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130-33.
- Rodrigues V, Bettini J, Silva PC, Ugarte D. (2003) Evidence for spontaneous spin-polarized transport in magnetic nanowires. Phys. Rev. Lett. 91, 096801
- Sellmyer DJ, Zheng M, Skomski R. (2001) Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. J. Phys. Condens. Matter 13, R433-60.
- Reich DH, Tanase M, Hultgren A, Bauer LA, Chen CS, Meyer GJ. (2003) Biological applications of multifunctional magnetic nanowires. J. Appl. Phys. 93, 7275-80.
- Tanase M, Silevitch DM, Hultgren A, Bauer LA, Searson PC, et al. (2002) Magnetic trapping and self-assembly of multicomponent nanowires. J. Appl. Phys. 91, 8549—51.
- van Wees BJ, van Houten H, Beenakker CWJ, Williamson JG, Kouwenhoven LP, et al. (1988) Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848-50.
- Muller CJ, van Ruitenbeek JM, de Jongh LJ. (1992) Conductance and supercurrent discontinuities in atomic-scale metallic constrictions of variable width. Phys. Rev. Lett. 69, 140-43.
- Frank S, Poncharal P, Wang ZL, de Heer WA. (1998) Carbon nanotube quantum resistors. Science 280, 1744-46.
- De Franceschi S, van Dam JA, Bakkers EPAM, Feiner LF, Gurevich L, Kouwenhoven LP. (2003) Single-electron tunneling in InP nanowires. Appl. Phys. Lett. 83, 344-46.
- Bjork MT, Ohlsson BJ, Thelander C, Persson AI, Deppert K, et al. (2002) Nanowire resonant tunneling diodes. Appl. Phys. Lett. 81, 4458-60.
- Thelander C, Martensson T, Bjork MT, Ohlsson BJ, Larsson MW, et al. (2003) Single-electron transistors in heterostructure nanowires. Appl. Phys. Lett. 83, 2052-54.
- Cheng G, Kolmakov A, Zhang Y, Moskovits M, Munden R, et al. (2003) Current rectification in a single GaN nanowire with a well-defined p–n junction. Appl. Phys. Lett. 83, 1578-80.
- Kovtyukhova NI, Martin BR, Mbindyo JKN, Smith PA, Razavi B, et al. (2001) Layer-by-layer assembly of rectifying junctions in and on metal nanowires. J. Phys. Chem. B 105, 8762-69.
- Rotkin S. V., Ruda H. E., Shik A. (2003) Universal description of channel conductivity for nanotube and nanowire transistors. Appl. Phys. Lett. 83, 1623-25.
- Yan Voon L. C. L., Willatzen M. (2003) Electron states in modulated nanowires. J. Appl. Phys. 93, 9997-10000.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRST

This work is licensed under a Creative Commons Attribution 4.0 International License.