Dual Band Grounded Coplanar Waveguide Fed Antenna for WLAN on Body Application

Authors

  • Suganthi Santhanam  Professor, Department of Electronics and Communication, K. Ramakrishnan College of Technology, Tamil Nadu, India
  • S. Mullaiventhan  Student, Department of Electronics and Communication, K. Ramakrishnan College of Technology, Tamil Nadu, India
  • Naseer Ahamed J  Student, Department of Electronics and Communication, K. Ramakrishnan College of Technology, Tamil Nadu, India
  • Ruban Raja Singh S  Student, Department of Electronics and Communication, K. Ramakrishnan College of Technology, Tamil Nadu, India

Keywords:

RF antenna, co-plannar waveguide, WLAN antennas, on-body antennas

Abstract

A very-low-profile grounded coplanar waveguide (GCPW)-fed slot antenna with an antenna thickness of 0.8 mm(about 0.0064λ at 2.4 GHz) and a compact size of 15 mm x 40 mm(about 0.12 λ x 0.32 λ at 2400 MHz) for 2.4/5.8 GHz dual-band wireless local area network (WLAN) on-body antenna application is presented. The GCPW slot antenna consists of a top ground with the GCPW feed line and radiating slot embedded thereon and a bottom ground spaced 0.8 mm to the top ground. The radiating slot is an asymmetric T-shape slot having a longer slot path for 2400~2500 MHz band and a shorter slot path for 5725~5875 MHz band. It is convenient to tune the dual-band operation by adjusting the lengths of the longer and shorter slot paths, respectively. Additionally, owing to the presence of the bottom ground, the GCPW slot antenna has decreased backward radiation. This causes antenna’s impedance matching very slightly varied when it is in the proximity of human body. The very-low-profile GCPW slot antenna is presented.

References

  1. S. Zhu and R. Langley, “Dual-band wearable textile antenna on an EBG substrate,” IEEE Trans. Antennas Propag., vol. 57, pp. 926-935, Apr. 2009.
  2. R. Khouri, P. Ratajczak, P. Brachat, and R. Staraj, “A thin surface-wave antenna using a via-less EBG structureb for 2.45 GHz on-body communication systems,” 4th European Conf. on Antennas and Propagation (EuCAP), Barcelona, Spain, Apr. 2010, pp. 1-4.
  3. H. Raad, A. I. Abbosh, H. M. Al-Rizzo, and D. G. Rucker, “Flexible and compact AMC based antenna for telemedicine applications,” IEEE Trans.Antennas Propag., vol. 61, pp. 524-531, Feb. 2013.
  4. Z. H. Jiang, D. E. Brocker, P. E. Sieber, and D. H. Werner, “A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices,” IEEE Trans. Antennas Propag., vol. 62, pp. 4021-4030, Aug. 2014.
  5. K. Agarwal, Y. X. Guo, and B. Salam, “Wearable AMC backed near-endfire antenna for on-body communications on Latex substrate,” IEEE Trans. Components, Packaging, Manufacturing Tech., vol. 6, pp. 346-358, Mar. 2016.
  6. G. Gao, R. Zhang, C. Yang, H. Meng, and B. Hu, “Microstrip monopole antenna with a novel UC-EBG for 2.4 GHz WBAN applications,” IET Microw. Antennas Propag., vol. 13, pp. 2319-2329, Oct. 2019.
  7. G. A. Conway and W. G. Scanlon, “Antennas for over-body-surface communication at 2.45 GHz,” IEEE Trans. Antennas Propag., vol. 57, pp. 844-855, Apr. 2009.
  8. C. H. Lin, K. Saito, M. Takahashi, and K. Ito, “A compact planar inverted-F antenna for 2.45 GHz on-body communications,” IEEE Trans.Antennas Propag., vol. 60, pp. 4422-4426, Sep 2012.
  9. J. Tak and J. Choi, “Circular-ring patch antenna with higher order mode for on-body communications,” Microw. Opt. Technol. Lett., vol. 56, pp. 1543-1547, Jul. 2014.
  10. X. Hu, Y. Sen, and G. A. E. Vandenbosch, “Wearable button antenna for dual-band WLAN applications with combined on and off-body radiation patterns,” IEEE Trans. Antennas Propag., vol. 65, pp. 1383-1387, Mar. 2017.
  11. R. Moro, S. Agneessens, H. Rogier, and M. Bozzi, “Wearable textile antenna in substrate integrated waveguide technology,” Electron. Lett.,vol. 48, pp. 985-987, Aug. 2012.
  12. M. J. Nie, X. X. Yang, G. N. Tan, and B. Han, “A compact 2.45-GHz broadband rectenna using grounded coplanar waveguide,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 986-989, 2015.
  13. C. H. K. Chin, Q. Xue, and C. H. Chan, “Design of a 5.8-GHz rectenna incorporating a new patch antenna,” IEEE Antennas Wireless Propag. Lett., vol. 4, pp. 175-178, 2005.
  14. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, p. 378. New York: John Wiley & Sons, 1981.
  15. Y. L. Ban, C. Li, C. Y. D. Sim, G. Wu, and K. L. Wong, “4G/5G multiple antennas for future multi-mode smartphone applications,” IEEE Access, vol. 4, pp. 2981-2988, 2016.
  16. I. R. R. Barani and K. L. Wong, “Integrated inverted-F and open-slot antennas in the metal-framed smartphone for 2 x 2 LTE LB and 4 x 4 LTE M/HB MIMO operations,” IEEE Trans. Antennas Propag., vol. 66, pp. 5004-5012, Oct. 2018.
  17. ANSYS HFSS. (Jun. 4, 2019) https://www.ansys.com/en/products/ electronics/ansys-hfss, 2019.
  18. P. A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M. C.
  19. Gosselin, D. Payne, A. Klingenböck, and N. Kuster, “IT’IS Database for thermal and electromagnetic parameters of biological tissues,” Version 4.0, May 15, 2018, DOI: 10.13099/VIP21000-04-0.

Downloads

Published

2021-04-10

Issue

Section

Research Articles

How to Cite

[1]
Suganthi Santhanam, S. Mullaiventhan, Naseer Ahamed J, Ruban Raja Singh S, " Dual Band Grounded Coplanar Waveguide Fed Antenna for WLAN on Body Application, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 9, Issue 1, pp.219-224, March-April-2021.