Identifying and Building Generative AI Use Cases Within Enterprise Software Products
DOI:
https://doi.org/10.32628/IJSRST2221185Keywords:
Generative AI (GenAI), enterprise software, AI use cases, machine learning models, transformer models, AI-driven automation, business applications, natural language processing (NLP), image generation, data augmentation, deep learning applications, ethical AI, AI governance, monetization strategies, subscription-based AI services, API-based pricing models, automation, decision-making, structured frameworks, implementation, scaling AI capabilities.Abstract
Generative AI (GenAI) is revolutionizing enterprise software by enabling text generation, image synthesis, and predictive modeling, leading to enhanced user experiences, workflow automation, and new business value. However, integrating GenAI into enterprise applications requires navigating technical, operational, and ethical challenges. This paper presents a structured framework for identifying and implementing GenAI use cases across various industries, addressing considerations such as data privacy, model interpretability, and computational efficiency. By categorizing GenAI applications, outlining best practices, and detailing fine-tuning methodologies, this research provides a comprehensive guide for enterprises to leverage GenAI effectively while ensuring ethical and sustainable AI deployment.
References
- Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.
- Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big?. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT’21), 610–623.
- Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems (NeurIPS’20), 33, 1877–1901.
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. Advances in Neural Information Processing Systems (NeurIPS’14), 27, 2672–2680.
- Marcus, G. (2021). The next decade in AI: Four steps towards robust artificial intelligence. ArXiv preprint.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems (NeurIPS’17), 30, 5998–6008.
- Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., & Sutskever, I. (2021). Zero-shot text-to-image generation. Proceedings of the 38th International Conference on Machine Learning (ICML’21), 139, 8821–8831.
- Chollet, F. (2017). Deep learning with Python. Manning Publications.
- Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Spitzer, E., Raji, I. D., & Gebru, T. (2019). Model cards for model reporting. Proceedings of the Conference on Fairness, Accountability, and Transparency (FAccT’19), 220–229.
- Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118.
- Li, X., Fei, Y., & Wang, L. (2019). Personalized recommendation system in e-commerce using AI-driven predictive analytics. Journal of Retail Analytics, 5(2), 99–114.
- Lee, J., Bagheri, B., & Kao, H. A. (2018). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23.
- Surden, H. (2019). Artificial intelligence and law: An overview. Georgia State University Law Review, 35(4), 1305–1337.
- Dastin, J. (2018, October 10). Amazon scraps secret AI recruiting tool that showed bias against women. Reuters.
- Zhang, Y., Feng, S., & Neubig, G. (2020). LAUG: Language-aware user simulation for task-oriented dialogue systems. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP’20), 8564–8579.
- J. Jangid, "Efficient Training Data Caching for Deep Learning in Edge Computing Networks," International Journal of Scientific Research in Computer Science, Engineering and Information Technology, vol. 7, no. 5, pp. 337–362, 2020. doi: 10.32628/CSEIT20631113
- Malhotra, S., Yashu, F., Saqib, M., & Divyani, F. (2020). A multi-cloud orchestration model using Kubernetes for microservices. Migration Letters, 17(6), 870–875. https://migrationletters.com/index.php/ml/article/view/11795
- Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022). Hierarchical text-conditional image generation with CLIP latents. ArXiv preprint.
- Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1–48.
- Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H. P., Kaplan, J., ... & Schulman, J. (2021). Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374.
- Agrawal, A., Gans, J., & Goldfarb, A. (2018). Prediction machines: The simple economics of artificial intelligence. Harvard Business Review Press.
- Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., & Kavukcuoglu, K. (2016). WaveNet: A generative model for raw audio. ArXiv preprint.
- Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems (NeurIPS’20), 33, 6840–6851.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRST

This work is licensed under a Creative Commons Attribution 4.0 International License.