A Survey of CNN Based Diseases of Plant Leaves Detection Techniques

Authors

  • Shagun Agrawal  Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
  • Dr. Mukesh Rawat  Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
  • Dr. Vimal Kumar  Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India

Keywords:

CNN, Leaf detection, Simulated Annealing, Leaf disease detection

Abstract

Today, deep learning techniques to image recognition are critical tools. Convolutional Neural Networks, a deep learning technology, has achieved a stunning success in this area. Convolutional Neural Networks are being used in a wide range of agricultural applications because of their ability to recognise images. Identifying plant species, improving yields via improved soil and water management, and detecting unwanted plants and animals are just a few of the methods available. Agricultural disease and pest detection using Convolutional Neural Networks is also being researched. As there is a vast variety of material out there on how to apply deep learning models in agriculture, selecting a suitable one might be difficult. The authors of this paper provide an overview of current research on the use of leaf images to train Deep Convolutional Neural Networks for the prediction of plant ailments. This research compares several pre-processing tactics, Convolutional Neural Network models and frameworks, and optimization methodologies for identifying plant ailments from leaf images. This article also contains the data and performance metrics needed to evaluate the model's efficacy. This research addresses both the advantages and disadvantages of various approaches and models that have been proposed in the literature. Studying plant leaf diseases using deep learning techniques will be made easier with this survey, which will aid researchers in the field.

References

  1. Chouhan S.S., Singh U.P., Jain S. Applications of computer vision in plant pathology: A survey. Arch. Comput. Methods Eng. 2020;27:611–632. doi: 10.1007/s11831-019-09324-0. 
  2. Kaur S., Pandey S., Goel S. Plants disease identification and classification through leaf images: A survey. Arch. Comput. Methods Eng. 2019;26:507–530. doi: 10.1007/s11831-018-9255-6. 
  3. Azimi S., Kaur T., Gandhi T.K. A deep learning approach to measure stress level in plants due to Nitrogen deficiency. Measurement. 2021;173:108650. doi: 10.1016/j.measurement.2020.108650. 
  4. Boulent J., Foucher S., Théau J., St-Charles P.-L. Convolutional neural networks for the automatic identification of plant diseases. Front. Plant Sci. 2019;10:941. doi: 10.3389/fpls.2019.00941.   
  5. Ngugi L.C., Abelwahab M., Abo-Zahhad M. Recent advances in image processing techniques for automated leaf pest and disease recognition—A review. Inf. Process. Agric. 2021;8:27–51. doi: 10.1016/j.inpa.2020.04.004. 
  6. Kundu N., Rani G., Dhaka V.S. A Comparative analysis of deep learning models applied for disease classification in Bell pepper; Proceedings of the 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC); Solan, India. 6–8 November 2020; pp. 243–247.
  7. Liu J., Wang X. Plant diseases and pests detection based on deep learning: A review. Plant Methods. 2021;17:22. doi: 10.1186/s13007-021-00722-9.   
  8. Yadav S., Sengar N., Singh A., Singh A., Dutta M.K. Identification of disease using deep learning and evaluation of bacteriosis in peach leaf. Ecol. Inform. 2021;61:101247. doi: 10.1016/j.ecoinf.2021.101247. 
  9. N K., Narasimha Prasad L.V., Pavan Kumar C.S., Subedi B., Abraha H.B., V E S. Rice leaf diseases prediction using deep neural networks with transfer learning. Environ. Res. 2021;198:111275. doi: 10.1016/j.envres.2021.111275.  
  10. Chen J., Zhang D., Zeb A., Nanehkaran Y.A. Identification of rice plant diseases using lightweight attention networks. Expert Syst. Appl. 2021;169:114514. doi: 10.1016/j.eswa.2020.114514. 
  11. Arnal Barbedo J.G. Plant disease identification from individual lesions and spots using deep learning. Biosyst. Eng. 2019;180:96–107. doi: 10.1016/j.biosystemseng.2019.02.002. 
  12. Picon A., Alvarez-Gila A., Seitz M., Ortiz-Barredo A., Echazarra J., Johannes A. Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Comput. Electron. Agric. 2019;161:280–290. doi: 10.1016/j.compag.2018.04.002. 
  13. Li P. Optimization Algorithms for Deep Learning. [(accessed on 30 June 2021)];2017 Available online: http://lipiji.com/docs/li2017optdl.pdf
  14. Kerkech M., Hafiane A., Canals R. Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases detection in UAV images. Comput. Electron. Agric. 2018;155:237–243. doi: 10.1016/j.compag.2018.10.006. 
  15. Fuentes A., Yoon S., Kim S., Park D. A Robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors. 2017;17:2022. doi: 10.3390/s17092022.   
  16. Chen J., Liu Q., Gao L. Visual tea leaf disease recognition using a convolutional neural network model. Symmetry. 2019;11:343. doi: 10.3390/sym11030343. 
  17. Lin Z., Mu S., Huang F., Mateen K.A., Wang M., Gao W., Jia J. A unified matrix-based convolutional neural network for fine-grained image classification of wheat leaf diseases. IEEE Access. 2019;7:11570–11590. doi: 10.1109/ACCESS.2019.2891739. 
  18. Liang W.J., Zhang H., Zhang G.F., Cao H. Rice blast disease recognition using a deep convolutional neural network. Sci. Rep. 2019;9:2869. doi: 10.1038/s41598-019-38966-0.   
  19. Liu L., Ouyang W., Wang X., Fieguth P., Chen J., Liu X., Pietikäinen M. Deep learning for generic Object detection: A survey. Int. J. Comput. Vis. 2020;128:261–318. doi: 10.1007/s11263-019-01247-4. 
  20. Adjabi I., Ouahabi A., Benzaoui A., Jacques S. Multi-block color-binarized statistical images for single-sample face recognition. Sensors. 2021;21:728. doi: 10.3390/s21030728.   
  21. Adjabi I., Ouahabi A., Benzaoui A., Taleb-ahmed A. Past, Present, and future of face recognition: A review. Electronics. 2020;9:1188. doi: 10.3390/electronics9081188. 
  22. Pradhan N., Dhaka V.S., Chaudhary H. Classification of human bones using deep convolutional neural network. IOP Conf. Ser. Mater. Sci. Eng. 2019;594:12024. doi: 10.1088/1757-899X/594/1/012024. 
  23. Xu R., Li C., Paterson A.H., Jiang Y., Sun S., Robertson J.S. Aerial images and convolutional neural network for cotton bloom detection. Front. Plant Sci. 2018;8:2235. doi: 10.3389/fpls.2017.02235.    
  24. Tran T.-T., Choi J.-W., Le T.-T.H., Kim J.-W. A Comparative study of deep CNN in forecasting and classifying the macronutrient deficiencies on development of tomato plant. Appl. Sci. 2019;9:1601. doi: 10.3390/app9081601. 
  25. Shah D., Trivedi V., Sheth V., Shah A., Chauhan U. ResTS: Residual deep interpretable architecture for plant disease detection. Inf. Process. Agric. 2021 doi: 10.1016/j.inpa.2021.06.001. 
  26. Bedi P., Gole P. Plant disease detection using hybrid model based on convolutional autoencoder and convolutional neural network. Artif. Intell. Agric. 2021;5:90–101. doi: 10.1016/j.aiia.2021.05.002. 
  27. Khanramaki M., Askari Asli-Ardeh E., Kozegar E. Citrus pests classification using an ensemble of deep learning models. Comput. Electron. Agric. 2021;186:106192. doi: 10.1016/j.compag.2021.106192. 
  28. Sravan V., Swaraj K., Meenakshi K., Kora P. A deep learning based crop disease classification using transfer learning. Mater. Today Proc. 2021 doi: 10.1016/j.matpr.2020.10.846. in press. 
  29. Tahir M.B., Khan M.A., Javed K., Kadry S., Zhang Y.-D., Akram T., Nazir M. Recognition of apple leaf diseases using deep Learning and variances-controlled features reduction. Microprocess. Microsyst. 2021;2021:104027. doi: 10.1016/j.micpro.2021.104027. 
  30. Agarwal M., Gupta S., Biswas K.K. A new Conv2D model with modified ReLU activation function for identification of disease type and severity in cucumber plant. Sustain. Comput. Inform. Syst. 2021;30:100473. doi: 10.1016/j.suscom.2020.100473. 

Downloads

Published

2022-06-30

Issue

Section

Research Articles

How to Cite

[1]
Shagun Agrawal, Dr. Mukesh Rawat, Dr. Vimal Kumar "A Survey of CNN Based Diseases of Plant Leaves Detection Techniques" International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 9, Issue 3, pp.586-598, May-June-2022.