An Area Efficient Full Adder Design Using Modified Mux in QCA

Authors

  • E. Bhavan Kumar Reddy  B.Tech Scholar, , Department of ECE, Svit, Ananthapuramu, India
  • Ms.K. Supraja  B.Tech Scholar, , Department of ECE, Svit, Ananthapuramu, India
  • Ms. K. Rupa  B.Tech Scholar, , Department of ECE, Svit, Ananthapuramu, India
  • G. Dharani Sai  B.Tech Scholar, , Department of ECE, Svit, Ananthapuramu, India
  • Mr.C. Manjunath. Mrs.T. Ranjitha Devi M  B.Tech Scholar, , Department of ECE, Svit, Ananthapuramu, India

Keywords:

Quantum dot cellular automata (QCA), multiplexer, full adder, majority gate, electrons, CMOS (complemented metal oxide semiconductor).

Abstract

In this project, the MUX design is modified and proposed in QCA. QCA technology is considered to be a possible alternative for circuit implementation in terms of energy efficiency, integration density and switching frequency which can replace CMOS implementations as nm technology decreases. Multiplexer (MUX) can be considered to be a suitable candidate for designing QCA circuits. The proposed full adder outperform the best existing design in terms of area with approximate reductions. Moreover, similar or better performance factors such as power and latency are achieved compared to the available designs. The scalability property of the proposed design is excellent and can be used for energy-efficient complex QCA circuit designs. These implemented designed are simulated and waveforms are observed using QCA designer tool.

References

  1. 2013 International Technology Roadmap for Semiconductors (ITRS). 2013. Available online: https://www.semiconductors.org/ resources/2013-international-technology-roadmap-for-semiconductors-itrs/ (accessed on 3 August 2021).
  2. Oya, T.; Asai, T.; Fukui, T.; Amemiya, Y. A majority-logic nanodevice using a balanced pair of single-electron boxes. J. Nanosci. Nanotechnol. 2002, 2, 333–342.
  3. Oya, T.; Asai, T.; Fukui, T.; Amemiya, Y. A majority-logic device using an irreversible single-electron box. IEEE Trans. Nanotechnol. 2003, 2, 15–22.
  4. Fahmy, H.A.H.; Kiehl, R.A. Complete logic family using tunneling-phase-logic devices. In Proceedings of the Eleventh International Conference on Microelectronics, ICM ’99, Safat, Kuwait, 22–24 November 1999; pp. 153–156.
  5. Zahoor, F.; Hussin, F.A.; Khanday, F.A.; Ahmad, M.R.; Mohd Nawi, I.; Ooi, C.Y.; Rokhani, F.Z. Carbon nanotube field effect transistor (cntfet) and resistive random access memory (rram) based ternary combinational logic circuits. Electronics 2021, 10, 79.
  6. Tabrizchi, S.; Panahi, A.; Sharifi, F.; Mahmoodi, H.; Badawy, A.H.A. Energy-Efficient Ternary Multipliers Using CNT Transistors. Electronics 2020, 9, 643.
  7. Lent, C.S.; Tougaw, P.D.; Porod, W.; Bernstein, G.H. Quantum cellular automata. Nanotechnology 1993, 4, 49.
  8. Tougaw, P.D.; Lent, C.S. Logical devices implemented using quantum cellular automata. J. Appl. Phys. 1994, 75, 1818–1825.
  9. Lent, C.S.; Tougaw, P.D. A device architecture for computing with quantum dots. Proc. IEEE 1997, 85, 541–557.
  10. Porod, W. Quantum-dot devices and quantum-dot cellular automata. Intern. J. Bifurc. Chaos 1997, 7, 2199–2218.
  11. Snider, G.; Orlov, A.; Amlani, I.; Zuo, X.; Bernstein, G.; Lent, C.; Merz, J.; Porod, W. Quantum-dot cellular automata: Review and recent experiments. J. Appl. Phys. 1999, 85, 4283–4285.
  12. Walus, K.; Jullien, G.A.; Dimitrov, V.S. Computer arithmetic structures for quantum cellular automata. In Proceedings of the Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; Volume 2, pp. 1435–1439.
  13. AlKaldy, E.; Majeed, A.H.; Zainal, M.S.; Nor, D.M. Optimum multiplexer design in quantum-dot cellular automata. arXiv 2020, arXiv:2002.00360.
  14. Sabbaghi-Nadooshan, R.; Kianpour, M. A novel QCA implementation of MUX-based universal shift register. J. Comput. Electron. 2014, 13, 198–210.
  15. Sen, B.; Dutta, M.; Goswami, M.; Sikdar, B.K. Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron. J. 2014, 45, 1522–1532.
  16. Rashidi, H.; Rezai, A.; Soltany, S. High-performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 2016, 15, 968–981.
  17. Asfestani, M.N.; Heikalabad, S.R. A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Phys. B Condens. Matter 2017, 512, 91–99.
  18. Song, Z.; Xie, G.; Cheng, X.; Wang, L.; Zhang, Y. An Ultra-Low Cost Multilayer RAM in Quantum-Dot Cellular Automata. IEEE Trans. Circuits Syst. II 2020, 67, 3397–3401.
  19. Bahar, A.N.; Wahid, K.A. Design and Implementation of Approximate DCT Architecture in Quantum-Dot Cellular Automata. IEEE Trans. VLSI Syst. 2020, 28, 2530–2539.
  20. Sen, B.; Goswami, M.; Mazumdar, S.; Sikdar, B.K. Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexers. Comput. Electr. Eng. 2015, 45, 42–54.
  21. Sen, B.; Dutta, M.; Saran, D.; Sikdar, B.K. An efficient multiplexer in quantum-dot cellular automata. In Progress in VLSI Design and Test; Springer: Berlin/Heidelberg, Germany, 2012; pp. 350–351.
  22. Raj, M.; Gopalakrishnan, L.; Ko, S.B.; Naganathan, N.; Ramasubramanian, N. Configurable Logic Blocks and Memory Blocks for Beyond-CMOS FPGA-Based Embedded Systems. IEEE Embed. Syst. Lett. 2020, 12, 113–116.
  23. Wang, L.; Xie, G. A Novel XOR/XNOR Structure for Modular Design of QCA Circuits. IEEE Trans. Circuits Syst. II 2020, 67, 3327–3331.

Downloads

Published

2022-06-30

Issue

Section

Research Articles

How to Cite

[1]
E. Bhavan Kumar Reddy, Ms.K. Supraja, Ms. K. Rupa, G. Dharani Sai, Mr.C. Manjunath. Mrs.T. Ranjitha Devi M "An Area Efficient Full Adder Design Using Modified Mux in QCA" International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 9, Issue 3, pp.645-649, May-June-2022.