Study of Influence of The Electron-Phonon Interaction on Quantum Dot Coupled to Microcavity

Authors

  • Anand Roshan  Research Scholar, Department of Physics, J. P. University, Chapra, India
  • R. K. Verma  Department of Physics, Jaglal Chowdhary College, Chapra, J. P. University, Chapra, India
  • K. B. Singh  Department of Physics, L. S. College, Muzaffarpur, B. R. A. Bihar university, Muzaffarpur, India

DOI:

https://doi.org/10.32628/IJSRST229329

Keywords:

Electron- Phonon Interaction, FTL, Momentum, Quantum Dot.

Abstract

In this present paper, we presented about the study of the electron-phonon interaction on quantum dot coupled to microcavity has the same energy scale as the other relevant interactions in low-dimensional systems and it is therefore important to study the polaronic effects in these systems [1-5]. First, we consider a one-dimensional (1D) electron system incorporating the electron-electron and electron-phonon interactions using the Luttinger model. We explicitly consider both the electron-optical-phonon interaction and the electron-acoustic-phonon interaction together with the electron-electron interaction. This system can be referred to as the Frhlich-Toyozawa-Luttinger (FTL) liquid [6-13]. We calculate the momentum distribution function of an FTL liquid exactly and examine how the momentum distribution function is affected by the electron-phonon interactions. Our results will be significant in the context of nanotubes and other systems where researchers have observed the Luttinger liquid behaviour experimentally [14-15].

References

  1. P. Moriarty, Rep. Prog. Phys. 64, 297 (2001);
  2. M. A. Kastner, Rev. Mod. Phys. 64, 849 (1992);
  3. N. F. Johnson, J. Phys.: Condens. Matter 7, 965 (1995);
  4. R. C. Ashoori, Nature 379, 413 (1996); 
  5. U. Woggon, Optical properties of Semiconductor Quantum Dots (Springer, Berlin, 1997);
  6. D. Bimberg, M. Grundmann and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, New York,1998);
  7. F. Geerinckx, F. M. Peeters and J. T. Devreese, J. Appl. Phys.68, 3435 (1990);
  8. J.-L. Zhu, J.-J. Xiong and B.-L. Gu, Phys. Rev. B 41, 6001(1990); 
  9. T. Takagahara, Phys. Rev. B 47, 4569 (1993);
  10. N. Porras-Montenegro, S. T. Perez-Merchancano and A. Latge, J. Appl. Phys.74, 7624 (1993);
  11. J. L. Marín, R. Riera and S. A. Cruz, J. Phys.: Condens. Matter 10, 1349 (1998);
  12. Ch. Sikorski, U. Merkt, Phys. Rev. Lett. 62 (1989) 2164; ibid. Surf. Sci. 229, 282 (1990);
  13. B. Meurer, D. Heitmann, K. Ploog, Phys. Rev. Lett. 68, 1371 (1992);
  14. R. C. Ashoori et al., Phys. Rev. Lett. 68, 3088 (1992);
  15. H. Drexler et al., Phys. Rev. Lett. 73, 2252 (1994).
  16. N. Bessis, G. Bessis and B. Joulakian, J. Phys. A: Math. Gen. 15, 3679 (1982);
  17. C. S. Lai, J. Phys. A: Math. Gen. 16, L181 (1983);
  18. R. E. Crandall, J. Phys. A: Math. Gen. 16, L395 (1983);
  19. M. Cohen, J. Phys. A: Math. Gen. 17, L101 (1984);
  20. A. Chatterjee, J. Phys. A: Math. Gen. 18, 2403 (1985);
  21. A. Chatterjee, Phys. Rep. 186, 249 (1990).
  22. T. Sako, P.-A. Hervieux and G. H. F. Diercksen, Phys. Rev. B 74, 045329 (2006);
  23. W. Xie, Solid State Commun. 127, 401 (2003);
  24. B. Boyacioglu, M. Saglam and A. Chatterjee, J. Phys. Condens.Matter 19, 456217 (2007);
  25. S. S. Gomez and R. H. Romero, Cent. Eur. J. Phys. 7, 12 (2009);
  26. B. Boyacioglu and A. Chatterjee, Int. J. Mod. Phys. B 26, 1250018 (2012).
  27. O. Verzelen, R. Ferreira and G. Bastard, Phys. Rev. B 64, 075315 (2001);
  28. T. Inoshita and H. Sakaki, Phys. Rev. B 56, R4355-R4358 (1997);
  29. M. A. Odnoblyudov, I. N. Yassievich and K. A. Chao, Phys. Rev. Lett. 83, 4884 (1999);
  30. L. Jacakl, J. Krasnyj, D. Jacak and P. Machnikowski, Phys. Rev. B 65, 113305 (2002).
  31. M. H. Degani and G. A. Farias, Phys. Rev. B 42, 11950 (1990);
  32. L. Wendler, A. V. Chaplik, R. Haupt and O.Hipolito, J. Phys. Condens. Matter 5, 8031 (1993);
  33. K. D. Zhu and S. W. Gu, Phys. Rev. B 47, 12947 (1993);
  34. K. D. Zhu and T. Kobayashi, Solid State Commun. 92, 353 (1994);
  35. S. Mukhopadhyay and A.Chatterjee, Phys.Lett. A 204, 411 (1995);
  36. S. Mukhopadhyay and A. Chatterjee, Phys. Rev. B 55, 9297 (1997);
  37. C. Y. Chen, P. W. Jin, W. S. Li and D. L. Din, Phys. Rev. 56, 14913 (1997);
  38. S. Mukhopadhyay and A. Chatterjee, Phys. Rev. B 58, 2088 (1998);
  39. S. Mukhopadhyay and A. Chatterjee, Phys. Lett. A 240, 100 (1998);
  40. S. Mukhopadhyay and A. Chatterjee, J. Phys.: Condens. Matter 11, 2071 (1999);
  41. M. A. Odnoblyudov, I. N. Yassievich and K. A. Chao, Phys. Rev.Lett. 83, 4884 (1999);
  42. N. Kervan, T. Altanhan and A. Chatterjee, Phys. Lett. A 315, 280 (2003);
  43. P. M. Krishna and A. Chatterjee, Physica E 30, 64 (2005);
  44. P. M. Krishna, S. Mukhopadhyay and A. Chatterjee, Phys. Lett. A 360, 655 (2007).
  45. S. Mukhopadhyay and A. Chatterjee, Phys. Rev. B 59, R7833 (1999);
  46. S. Mukhopadhyay and A. Chatterjee, Int. J. Mod. Phys. B 14, 3897 (2000);
  47. S. Mukhopadhyay, B. Boyacioglu, M. Saglam and A. Chatterjee, Physica E 40, 2776-2782 (2008).
  48. P. M. Krishna, S. Mukhopadhyay and A. Chatterjee , Int. J. Mod. Phys. B 16, 1489 (2002).
  49. S. Yanar et al., Superlattices and Microstruct. 43, 208 (2008).
  50. S. Mukhopadhyay and F. M. Peeters, J. Phys.: Condens. Matter 14, 8005-8010 (2002).
  51. F. M. Peeters and J. T. Devreese, Phys. Rev. B 31, 3689 (1985);
  52. G.Q. Hai, F.M. Peeters and J.T. Devreese, Physica B 184, 289 (1993);
  53. F. A. P. Osorio, Marcelo Z. Maialle and O. Hipolito, Phys. Rev. B 57, 1644 (1998);
  54. I. Hubac and S. Wilson, J. Phys. B: At. Mol. Opt. Phys. 33, 365–374 (2000).

Downloads

Published

2022-06-30

Issue

Section

Research Articles

How to Cite

[1]
Anand Roshan, R. K. Verma, K. B. Singh "Study of Influence of The Electron-Phonon Interaction on Quantum Dot Coupled to Microcavity " International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 9, Issue 3, pp.91-97, May-June-2022. Available at doi : https://doi.org/10.32628/IJSRST229329