Performance Analysis of Fuzzy Logic Controller Based DVR for Power Quality Enhancement
Keywords:
Fuzzy Logic Controller (FLC), Dynamic Voltage Restorer (DVR), Power Quality (PQ), FACTS, Total Harmonic Distortion (THD), Voltage Source Inverter (VSI).Abstract
This paper presents a fuzzy logic controller (FLC)-based dynamic voltage restorer (DVR) to reduce power quality (PQ) issues in the distribution system (DS). The FLC-DVR injects voltage into the line to maintain voltage stability in the DS. The DVR is a Series FACTS device, which is connected in series with the system to improve power quality. The FLC is a novel control method to control the operation of a DVR. By using the FLC controller, the DVR responds very quickly to disturbances in the DS. The entire proposed system is designed and tested in the MATLAB/SIMULINK software. The updated simulation results show the FLC-DVR is more accurate compared to a conventional PI controller.
References
- N. Khan, S. Dilshad, R. Khalid, A. R. Kalair, and N. Abas, ‘‘Review of energy storage and transportation of energy,’’ Energy Storage, vol. 1, no. 3, Jun. 2019, doi: 10.1002/est2.49.
- M. A. Basit, S. Dilshad, R. Badar, and S. M. S. ur Rehman, ‘‘Limitations, challenges, and solution approaches in grid-connected renewable energy systems,’’ Int. J. Energy Res., vol. 44, no. 6, pp. 4132–4162, May 2020, doi: 10.1002/er.5033.
- A. Kalair, N. Abas, A. R. Kalair, Z. Saleem, and N. Khan, ‘‘Review of harmonic analysis, modeling and mitigation techniques,’’ Renew. Sustain. Energy Rev., vol. 78, pp. 1152–1187, Oct. 2017, doi: 10.1016/j.rser.2017.04.121.
- F. H. Gandoman, A. Ahmadi, A. M. Sharaf, P. Siano, J. Pou, B. Hredzak, and V. G. Agelidis, ‘‘Review of FACTS technologies and applications for power quality in smart grids with renewable energy systems,’’ Renew. Sustain. Energy Rev., vol. 82, pp. 502–514, Feb. 2018, doi: 10.1016/j.rser.2017.09.062.
- A. M. Sharaf and A. A. Abdelsalamy, ‘‘A novel facts based dynamic voltage compensation scheme for smart electric grid stabilization and efficient utilization,’’ in Proc. 24th Can. Conf. Electr. Comput. Eng. (CCECE), May 2011, pp. 000042–000047, doi: 10.1109/CCECE.2011.6030405.
- A. R. Kalair, N. Abas, A. Kalair, Q. U. Hasan, and N. Khan, ‘‘Impact of FACTS devices on transmission and distribution system,’’ J. Active Passive. Electron. Devices, vol. 14, no. 4, pp. 287–305, 2019.
- M. Büyük, M. Inci, and M. Tümay, ‘‘Performance comparison of voltage sag/swell detection methods implemented in custom power devices,’’ Rev. Roum Sci. Techn.-Électrotechn. Énerg, vol. 62, no. 2, pp. 129–133, 2017.
- Y. W. Li and J. He, ‘‘Distribution system harmonic compensation methods: An overview of DG-interfacing inverters,’’ IEEE Ind. Electron. Mag., vol. 8, no. 4, pp. 18–31, Dec. 2014, doi: 10.1109/MIE.2013.2295421.
- N. G. Hingorani and L. Gyugyi, Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems. New York, NY, USA: Wiley, 2000.
- Y.-H. Song and A. Johns, Flexible ac Transmission Systems (FACTS), no. 30. Edison, NJ, USA: IET, 1999.
- K. Habur and D. O’Leary, ‘‘FACTS-flexible alternating current transmission systems: For cost effective and reliable transmission of electrical energy,’’ Siemens-World Bank Doc., Erlangen, Germany, Draft Rep., 2004, p. 46. [Online]. Available: http://www.academia.edu/ download/41305916/facts_siemens.pdf
- W. Frangieh and M. B. Najjar, ‘‘Active control for power quality improvement in hybrid power systems,’’ in Proc. 3rd Int. Conf. Technol. Adv. Electr., Electron. Comput. Eng. (TAEECE), Apr. 2015, pp. 218–223, doi: 10.1109/TAEECE.2015.7113630.
- S. Agalar and Y. A. Kaplan, ‘‘Power quality improvement using STS and DVR in wind energy system,’’ Renew. Energy, vol. 118, pp. 1031–1040, Apr. 2018, doi: 10.1016/j.renene.2017.01.013.
- W. Martiningsih, U. Y. Prakoso, and Herudin, ‘‘Power quality improvement using dynamic voltage restorer in distribution system PT. DSS power plant,’’ in Proc. MATEC Web Conf., vol. 218, Oct. 2018, p. 01003. [Online]. Available: https://www.matec-conferences.org/articles/matecconf/pdf/ 2018/77/matecconf_iciee2018_01003.pdf, doi: 10.1051/matecconf/ 201821801003.
- A. M. Eltamaly, Y. Sayed, A.-H. M. El-Sayed, and A. N. A. Elghaffar, ‘‘Mitigation voltage sag using DVR with power distribution networks for enhancing the power system quality,’’ IJEEAS J., vol. 1, no. 2, pp. 2600–7495, Oct. 2018.
- K. K. Ali, M. Talei, A. Siadatan, and S. M. H. Rad, ‘‘Power quality improvement using novel dynamic voltage restorer based on power electronic transformer,’’ in Proc. IEEE Electr. Power Energy Conf. (EPEC), Oct. 2017, pp. 1–6, doi: 10.1109/EPEC.2017.8286166.
- L. Yan, X. Chen, X. Zhou, H. Sun, and L. Jiang, ‘‘Perturbation compensation-based non-linear adaptive control of ESS-DVR for the LVRT capability improvement of wind farms,’’ IET Renew. Power Gener. vol. 12, no. 13, pp. 1500–1507, Oct. 2018, doi: 10.1049/iet-rpg. 2017.0839.
- A. Benali, M. Khiat, T. Allaoui, and M. Denai, ‘‘Power quality improvement and low voltage ride through capability in hybrid wind-PV farms grid-connected using dynamic voltage restorer,’’ IEEE Access, vol. 6, pp. 68634–68648, 2018, doi: 10.1109/ACCESS.2018.2878493.
- Danbumrungtrakul, T. Saengsuwan, and P. Srithorn, ‘‘Evaluation of DVR capability enhancement-zero active power tracking technique,’’ IEEE Access, vol. 5, pp. 10285–10295, 2017,
- A. I. Omar, S. H. E. Abdel Aleem, E. E. A. El-Zahab, M. Algablawy, and Z. M. Ali, ‘‘An improved approach for robust control of dynamic voltage restorer and power quality enhancement using grasshopper optimization algorithm,’’ ISA Trans., vol. 95, pp. 110–129, Dec. 2019, doi: 10.1016/j.isatra.2019.05.001.
- V. Verma and R. Gour, ‘‘OLTC-DVR hybrid for voltage regulation and averting reverse power flow in the micro-grid with intermittent renewable energy sources,’’ in Proc. IEEE Ind. Electron. Appl. Conf. (IEACon), Nov. 2016, pp. 81–87, doi: 10.1109/IEACON.2016.8067360.
- S. P. Mishra, B. Biswal, J. P. Roselyn, and D. Devaraj, ‘‘Simulation and analysis of DVR for mitigating voltage sags and swells,’’ Procedia Eng., vol. 64, pp. 341–350, 2013, doi: 10.1016/j.proeng.2013.09.106.
- S. Khalid and B. Dwivedi, ‘‘Power quality issues, problems, standards & their effects in industry with corrective means,’’ Int. J. Adv. Eng. Technol., vol. 1, no. 2, p. 1, 2011.
- IEEE Recommended Practice for Monitoring Electric Power Quality, Standard 1159-1995. Accessed: May 16, 2020. [Online].
- R. Wang, Q. Sun, D. Ma, and Z. Liu, ‘‘the small-signal stability analysis of the droop-controlled converter in electromagnetic timescale,’’ IEEE Trans. Sustain. Energy, vol. 10, no. 3, pp. 1459–1469, Jul. 2019, doi: 10.1109/TSTE.2019.2894633.
- W. Rui, S. Qiuye, Z. Pinjia, G. Yonghao, Q. Dehao, and W. Peng, ‘‘Reduced-order transfer function model of the droop-controlled inverter via jordan continued-fraction expansion,’’ IEEE Trans. Energy Convers., vol. 35, no. 3, pp. 1585–1595, Sep. 2020, doi: 10.1109/TEC.2020.2980033.
- S. M. Deshmukh and B. Dewani, ‘‘Overview of dynamic voltage restorer (DVR) for power quality improvement,’’ Int. J. Eng. Res. Appl., vol. 2, no. 6, pp. 1372–1377, 2012.
- A. Kalair, N. Abas, M. S. Saleem, A. R. Kalair, and N. Khan, ‘‘Role of energy storage systems in energy transition from fossil fuels to renewables,’’ Energy Storage, p. e135, Feb. 2020, doi: 10.1002/est2.135.
- M. Mani Sankar and S. B. L. Seksena, ‘‘A cost effective voltage sag compensator for distribution system,’’ Int. J. Syst. Assurance Eng. Manage., vol. 8, no. S1, pp. 56–64, Jan. 2017, doi: 10.1007/s13198-015- 0373-3.
- N. Van Minh, B. Quoc Khanh, and P. Viet Phuong, ‘‘Comparative simulation results of DVR and D-STATCOM to improve voltage quality in distributed power system,’’ in Proc. Int. Conf. Syst. Sci. Eng. (ICSSE), Jul. 2017, pp. 196–199, doi: 10.1109/ICSSE.2017.8030864.
- S. Rao, P. S. R. Krishna, and S. Babu, ‘‘Mitigation of voltage sag, swell and THD using dynamic voltage restorer with photovoltaic system,’’ in Proc. Int. Conf. Algorithms, Method Models Appl. Emerg. Technol. (ICAMMAET), Feb. 2017, pp. 1–7, [32] V. K. Ramachandaramurthy, C. Fitzer, A. Arulampalam, C. Zhan, M. Barnes, and N. Jenkins, ‘‘Control of a battery supported dynamic voltage restorer,’’ IEE Proc.-Gener., Transmiss. Distrib. vol. 149, no. 5, pp. 533–542, Sep. 2002.
- M. Vilathgamuwa, A. A. D. Ranjith Perera, and S. S. Choi, ‘‘Performance improvement of the dynamic voltage restorer with closed-loop load voltage and current-mode control,’’ IEEE Trans. Power Electron., vol. 17, no. 5, pp. 824–834, Sep. 2002,
- Naeem Abas. SAAD DILSHAD. Power Quality Improvement Using Dynamic Voltage Restorer.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRST

This work is licensed under a Creative Commons Attribution 4.0 International License.