Antibacterial, SOD like and Nuclease Interaction of Fluoroquinolone Based Copper(II) Complexes

Authors

  • Dr. Deepen S. Gandhi   Government Science College, Sector-15, Gandhinagar, Gujarat, India

Keywords:

Ofloxacin, Square pyramidal, Nuclease activity, SOD mimic, Antibacterial, Kb

Abstract

Drug–based mixed–ligand copper(II) complexes of type [Cu(L)(An)Cl].5H2O have been prepared with an aim to generate a database for the development of metal based therapeutic agents. Synthesized complexes were characterized using infrared spectra, electronic spectral, magnetic measurements, elemental analyses, thermal investigation and mass spectroscopy. Spectral investigations of metal complexes reveal monomeric five-coordinate square pyramidal geometry. The viscosity measurement was employed to determine the mode of binding of complexes to DNA. The DNA binding efficacy was determined using absorption titration. The binding constant (Kb) ranging from 0.846 x 104 to 2.0 x 105 M–1 pointing toward the covalent mode of binding, whereas DNA cleavage study shows better cleaving ability of the complexes compare to metal salts and standard drug exhibited via conversion of super coiled form of pUC19 DNA to linear form via circular form. From the SOD mimic study, it was found that 0.415– 1.305 µM concentrations of complexes were enough to inhibit the reduction rate of NBT by 50% (IC50) in NBT/NADH/PMS system. Antibacterial activity has been assayed against selective Gram(-ve) and Gram(+ve) microorganisms using the doubling dilution technique.

References

  1. H.I. El-Subbagh, S.M. Abu-Zaid, M.A. Mahran, F.A. Badria, A.M. Al-obaid, J. Med. Chem. 43 (2000) 2915-2921.
  2. A.A. Watson, G.W.J. Fleet, N. Asano, R.J. Molyneux, R.J. Nash, Phytochemistry, 56 (2001) 265-295.
  3. C.R. Ganellin, R.G. Spickett, J. Med. Chem. 8 (1965) 619-625.
  4. R.E. Hagenbach, H. Gysin, Experimentia 8 (1952) 184-185.
  5. B. Ileana, V. Dobre, I. Nicluescu-Duvaz, J. Prakt. Chem. 327 (1985) 667-674.
  6. I.G. Mokio, A.T. Soldatenkov, V.O. Federov, E.A. Ageev, N.D. Sergeeva, S. Lin, E.E. Stashenku, N.S. Prostakov, E.L. Andreeva, Khim.Farm. Zh. 23 (1989) 421-427.
  7. D.C. Hooper, J.S. Wolfson, E.Y. Ng, M.N. Swartz, Am. J. Med. (Suppl. 4A) 82 (1987) 12-20.
  8. I. Turel, Coord. Chem. Rev. 232 (2002) 27-47.
  9. I. Fridovich, Adv. Enzymol. 58 (1986) 61-97.
  10. J.V. Bannister, W.H. Bannister, G. Rotilio, CRC Crit. Rev. Biochem. 22 (1987) 111-180.
  11. D. Klug, J. Rabani, I. Fridovich, J. Biol. Chem. 247 (1972) 4839-4842.
  12. G. Rotilio, R.C. Bray, E.M. Fielden, Biochim. Biophys. Acta 268 (1972) 605-609.
  13. J.A. Fee, C. Bull, J. Biol. Chem. 261 (1986) 13000-13005.
  14. H.J. Forman, I. Fridovich, J. Biol. Chem. 248 (1973) 2645-2649
  15. J.A. Roe, A. Butler, D.M. Scholler, J.S. Valentine, L. Marky, K. Breslauer, Biochem. 27 (1988) 950-958.
  16. B.S. Furniss, A.J. Hannaford, P.W.G. Smith, A.R. Tatchell, Vogel’s textbook of practical organic chemistry, fifth ed., ELBS and Longman, London, 2004.
  17. A.I. Vogel Textbook of quantitative inorganic analysis, fourth ed., ELBS and Longman, London, 1978.
  18. P. Pascal, Compt. Rend. 57 (1944) 218-234.
  19. L.J. Henderson Jr., F.R. Fronczek, W.R. Cherry, J. Am. Chem. Soc. 106 (1984) 5876-5879.
  20. C. Hiort, P. Lincoln, B. Norden, J. Am. Chem. Soc. 115 (1993) 3448-3454.
  21. G.F. Smith, F. WM. Cagle, JR. J. Org. Chem. 12(6) (1947) 781-784.
  22. M. Alexious, I. Tsivikas, C. Dendreinou-Samara, A.A. Pantazaki, P. Trikalitis, N. Lalioti, D.A. Kyriakidis, D.P. Kessissoglou, J. Inorg. Biochem. 93 (2003) 256-264.
  23. J. Marmur, J. Mol. Bio. 3 (1961) 208–214.
  24. K.A. Meadows, F. Liu, J. Sou, B.P. Hudson, D.R. McMillin, Inorg. Chem. 32 (1993) 2919–2923.
  25. J.S. Trommel, L.G Marzilli, Inorg. Chem. 40 (2001) 4374–4383.
  26. Mudasir, N. Yoshioka, H. Inoue, J. Inorg. Biochem. 77 (1999) 239–247.
  27. L. Jin, P. Yang, J. Inorg. Biochem. 68 (1997) 79–83.
  28. Q.L. Zhang, J.G. Liu, H. Chao, G.Q. Xue, L.N. Ji, J. Inorg. Biochem. 83 (2001) 49–55.
  29. A. Wolfe, G.H. Shimer Jr, T. Meehan, Biochem. 26 (1987) 6392-6396.
  30. J.B. Chaires, N. Dattagupta, D.M. Crothers, Biochem. 21 (1982) 3933-3940.
  31. G. Cohen, H. Eisenberg, Biopolymers, 8 (1969) 45-55.
  32. V. Ponti, M.V. Dianzaini, K.J. Cheesoman, T.F. Stater, Chemico-Biological Interactions 23 (1978) 281-297.
  33. Z.H. Chohan, C.T. Supuran, A. Scozzafava, J. Enz. Inh. Med. Chem. 20(3) (2005) 303-307.
  34. G.B Deacon, R.J. Philips, Coord. Chem. Rev. 23 (1980) 227-250.
  35. K. Nakamoto, Infrared, and Raman spectra of inorganic and coordination compounds, fourth ed., A Wiley Interscience Publication, New York, 1986.
  36. S.H. Patel, P.B. Pansuriya, M.R. Chhasatia, H.M. Parekh, M.N. Patel, J. Therm. Anal. Cal. 91(2) (2008) 413-418.
  37. I Turel, I. Leban, N. Bukovec, J. Inorg. Biochem. (1999) 241-245.
  38. H.H. Freedman, J. Am. Chem. Soc. 83 (1961) 2900-2905.
  39. S. Chandra, N. Gupta, L.K. Gupta, Synth. React. Inorg. Met-Chem. 34(5) (2004) 919-927.
  40. M.F. Iskander, L. EL-Sayed, N.M.H. Salem, R. Warner, W.J. Haase, Coord. Chem. 58(2) (2005) 125-139.
  41. G. Mendoza-Diaz, L.M.R. Martineza-Auguilera, R. Perez-Alonso, X. Solans, R. Moreno-Esparza, Inorg. Chim. Acta 138 (1987) 41-47.
  42. M. Melnik, Coord. Chem. Rev. 36(1) (1981)1-44.
  43. R. Carballo, A. Castineiras, B. Covelo, E. Garcia-Martinez, J. Niclos, E. M. Vazquez-Lopez, Polyhedron 23 (2004) 1505-1518.
  44. B.N. Figgis, J. Lewis, In Lewis, J. Wilkins, R. G. (Eds.). Modern Coordination Chemistry: Principles and Methods. New York: Interscience, (1960) 400.
  45. T.D. Cyr, B.A. Dawson, G.A. Neville, H.F. Shrvell, J. Pharm. Biomed. Annal. 14 (1996) 247-255.
  46. N. Dharmaraj, P Viswanathamurthi, K. Natarajan, Trans. Met. Chem. 26 (2001) 105-109.
  47. N.M. El-Metwaly, Trans. Met. Chem. 32 (2007) 88-94.
  48. A.K. Patra, S. Dhar, M. Nethaji, A.R. Chakravarty. Dalton Trans. (2005) 896-902.
  49. T. Hirohama, Y. Karunuki, E. Ebina, T. Suzaki, H. Arii, M. Chikira, P.T. Selvi, M. Palaniandavar, J. Inorg. Biochem. 99 (2005) 1205-1219.
  50. T. Ito, S. Thyagarajan, K.D. Karlin, S.E. Rokita, Chem. Comm. (2005) 4812-4814.
  51. S. Satyanarayana, J.C. Dabrowiak, J.B. Chaires, Biochemistry 32 (1993) 2573–2584.
  52. R.P. Hertzberg, P.B. Dervan, J. Am. Chem. Soc. 104(1) (1982) 313-315.
  53. D.S. Sigman, D.R. Graham, L.E. Marshall, K.A. Reich, J. Am. Chem. Soc. 102(16) (1980) 5419-5421.
  54. H. Chao, W.J. Mei, Q.W. Huang, L.N. Ji, J. Inorg. Biochem. 92 (2002) 165–170.
  55. J. Casanova, G. Alzuet J. Borrás, J. Latorre, M.S. Sanau, S. García-Granda, J. Inorg. Biochem. 60 (1995) 219–230.

Downloads

Published

2018-07-30

Issue

Section

Research Articles

How to Cite

[1]
Dr. Deepen S. Gandhi , " Antibacterial, SOD like and Nuclease Interaction of Fluoroquinolone Based Copper(II) Complexes, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 4, Issue 9, pp.448-463, July-August-2018.