Biological Screening of Polypyridyl Chloro–Ruthenium(II) Complexes : Antimicrobial and DNA Interaction
Keywords:
polypyridine; Ru(II) complex; DNA interaction; AntibacterialAbstract
Polypyridyl ruthenium(II) complexes were synthesized and characterized. Binding mode of the complexes to DNA was evaluated from combine results of electronic absorption and viscosity measurement study. The results suggest that complexes 1, 2 and 3 bind to DNA via classical intercalation, electrostatic interaction and partial intercalation, respectively. Complex 2 shows less affinity for DNA. Cleavage of pUC19 DNA by complexes was checked using gel electrophoresis. The data reveals that highest cleaving ability is of complex 1.
References
- A. Pyle, J. K. Barton, Prog. Inorg. Chem. 1990, 38, 413. doi:10.1002/9780470166390.ch7
- D. S. Sigman, A. Mazumder, D. M. Perrin, Chem. Rev. 1993, 93, 2295. doi:10.1021/cr00022a011
- W. I. Sundquist, S. J. Lippard, Coord. Chem. Rev. 1990, 100, 293. doi:10.1016/0010-8545(90)85013-I
- Y. J. Liu, X. Y. Guan, X. Y. Wei, L. X. He, W. J. Mei, J. H. Yao, Trans. Met. Chem. 2008, 33, 289. doi:10.1007/s11243-007-9042-y
- Y. J. Liu, X. Y. Wei, W. J. Mei, L. X. He, Trans. Met. Chem. 2007, 32, 762. doi:10.1007/s11243-007-0246-y
- Y. J. Liu, J. C. Chen, F. H. Wu, K. C. Zheng, Trans. Met. Chem. 2009, 34, 297. doi:10.1007/s11243-009-9194-z
- V. Rajendiran, M. Murali, S. Eringathodi, P. Mallayan, V. S. Periasamy, M. A. Akbarsha, Dalton Trans. 2008, 2157. doi:10.1039/b715077f
- G. Vaidyanathan, B. U. Nair, J. Inorg. Biochem. 2002, 91, 405. doi:10.1016/S0162-0134(02)00448-8
- H. Harald, E. Abdelkrim, P. H. J. Albertus, U. S. Schuberta, Tetrahedron 2004, 60, 6121. doi:10.1016/j.tet.2004.05.071
- Q. X. Zhen, Q. L. Zhang, B. H. Ye, L. N. Ji, L. Wang, J. Inorg. Biochem. 2000, 78, 293. doi:10.1016/S0162-0134(00)00056-8
- J. G. Liu, Q. L. Zhang, L. N. Ji, Trans. Met. Chem. 2001, 26, 733. doi:10.1023/A:1012037312390
- P. U. Maheswari, V. Rajendiran, M. Palaniandavar, R. Parthasarathi, V. Subramanian, J. Inorg. Biochem. 2006, 100, 3. doi:10.1016/j.jinorgbio.2005.09.008
- L. F. Tan, H. Chao, Inorg. Chim. Acta. 2007, 360, 2016. doi:10.1016/j.ica.2006.10.016
- M. N. Patel, P. A. Parmar, D. S. Gandhi, Bioorg. Med. Chem. 2010, 18, 1227. doi:10.1016/j.bmc.2009.12.037
- N. Yoshikawa, S. Yamabe, N. Kanehisa, Y. Kai, H. Takashima, K. Tsukahara, Inorg. Chim. Acta 2006, 359, 4585. doi:10.1016/j.ica.2006.07.043
- C. Eva, A. C. G. Hotze, D. M. Tooke, A. L. Spek, J. Reedijk, Inorg. Chim. Acta 2006, 359, 830. doi:10.1016/j.ica.2006.07.043
- S. Goswami, A. R. Chakravarty, A. Chakravorty, Inorg. Chem. 1982, 21, 2737. doi:10.1021/ic00137a040
- C. W. Jiang, H. Chao, H. Li, L. N. Ji, J. Inorg. Biochem. 2003, 93, 247. doi:10.1016/S0162-0134(02)00577-9
- S. R. Dalton, S. Glazier, B. Leung, S. Win, C. Megatulski, S. J. Nieter Burgmayer, J. Biol. Inorg. Chem. 2008, 13, 1133. doi:10.1007/s00775-008-0399-y
- P. Nagababu, S. Satyanarayana, Polyhedron 2007, 26, 1686. doi:10.1016/j.poly.2006.12.027
- G. Yang, J. Z. Wu, L. Wang, L. N. Ji, X. Tian, J. Inorg. Biochem. 1997, 66, 141. doi:10.1016/S0162-0134(96)00194-8
- J. Tan, B. Wang, L. Zhu, J. Biol. Inorg. Chem. 2009, 14, 727. doi:10.1007/s00775-009-0486-8
- J. S. Trommel, L. G. Marzilli, Inorg. Chem. 2001, 40, 4374. doi:10.1021/ic010232e
- S. Mudasir, N. Yoshioka, H. Inoue, J. Inorg. Biochem. 1999, 77, 239. doi:10.1016/S0162-0134(99)00206-8
- L. Fin, P. Yang, J. Inorg. Biochem. 1997, 68, 79. doi:10.1016/S0162-0134(97)00004-4
- Q. L. Zhang, J. G. Liu, H. Chao, G. Q. Xue, L. N. Ji, J. Inorg. Biochem. 2001, 83, 49. doi:10.1016/S0162-0134(00)00132-X
- L. F. Tan, H. Chao, Inorg. Chim. Acta 2007, 360, 2016. doi:10.1016/j.ica.2006.10.016
- J. B. Chaires, N. Dattagupta, D. M. Crothers, Biochem. 1982, 21, 3933. doi:10.1021/bi00260a005
- G. Cohen, H. Eisenberg, Biopolymers 1969, 8, 45. doi:10.1002/bip.1969.360080105
Downloads
Published
Issue
Section
License
Copyright (c) IJSRST

This work is licensed under a Creative Commons Attribution 4.0 International License.