Adsorption Characteristics of Some Azo Dye on Nanobiocomposite in a Column Operation

Authors

  • Mitali Sarkar  Department of Chemistry, University of Kalyani, Kalyani, West Bengal, India
  • Pankaj Sarkar  Department of Chemistry, Nabadwip Vidyasagar College, Nabadwip, West Bengal, India

DOI:

https://doi.org//10.32628/IJSRST229647

Keywords:

Congo Red, Iron Modified Cellulose Nanobead, Batch and Column Adsorption, Elution

Abstract

Unfixed dyes released from various industries directly impact on the environment quality which is quite alarming and a matter of concern. In the present study, the removal of a carcinogenic azo dye, congo red (CR), was modelled for column adsorption dynamics following batch study in aqueous solution using iron modified cellulose nanobead. The effect of process parameters has been described for both batch and column study. Adsorption capacity of CR in the batch mode and column mode was calculated to be 3.29 and 8.69 mg g−1 respectively. The elution of retained CR from FeCNB phase was performed using 1.0 x 10-1 mol dm-3 NaOH and the maximum elution was found to be 81.25%. The experimental data were well described by BDST model.

References

  1. Paździor, K., Bilińska, L., & Ledakowicz, S. (2019). A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chemical Engineering Journal, 376, 120597.
  2. Sriram, N., Reetha, D., & Saranraj, P. (2013). Biological degradation of reactive dyes by using bacteria isolated from dye effluent contaminated soil. Middle–East Journal of Scientific Research, 17(12), 1695-1700.
  3. Mishra, S., Nayak, J. K., & Maiti, A. (2020). Bacteria-mediated bio-degradation of reactive azo dyes coupled with bio-energy generation from model wastewater. Clean Technologies and Environmental Policy, 22(3), 651-667.
  4. Ikram, M., Naeem, M., Zahoor, M., Hanafiah, M. M., Oyekanmi, A. A., Ullah, R., ... & Gulfam, N. (2022). Biological degradation of the azo dye basic orange 2 by Escherichia coli: A sustainable and ecofriendly approach for the treatment of textile wastewater. Water, 14(13), 2063.
  5. Nawaz, S., Siddique, M., Khan, R., Riaz, N., Waheed, U., Shahzadi, I., & Ali, A. (2022). Ultrasound-assisted hydrogen peroxide and iron sulfate mediated Fenton process as an efficient advanced oxidation process for the removal of congo red dye. Polish Journal of Environmental Studies, 31(3), 2749-2761.
  6. Saleh, R., & Taufik, A. (2019). Degradation of methylene blue and congo-red dyes using Fenton, photo-Fenton, sono-Fenton, and sonophoto-Fenton methods in the presence of iron (II, III) oxide/zinc oxide/graphene (Fe3O4/ZnO/graphene) composites. Separation and Purification Technology, 210, 563-573.
  7. Solano, A. M. S., Garcia-Segura, S., Martinez-Huitle, C. A., & Brillas, E. (2015). Degradation of acidic aqueous solutions of the diazo dye Congo Red by photo-assisted electrochemical processes based on Fenton’s reaction chemistry. Applied Catalysis B: Environmental, 168, 559-571.
  8. Khadhraoui, M., Trabelsi, H., Ksibi, M., Bouguerra, S., & Elleuch, B. (2009). Discoloration and detoxicification of a Congo red dye solution by means of ozone treatment for a possible water reuse. Journal of Hazardous Materials, 161(2-3), 974-981.
  9. Gharbani, P., Tabatabaii, S. M., & Mehrizad, A. (2008). Removal of Congo red from textile wastewater by ozonation. International Journal of Environmental Science & Technology, 5(4), 495-500.
  10. Eltaweil, A. S., Elshishini, H. M., Ghatass, Z. F., & Elsubruiti, G. M. (2021). Ultra-high adsorption capacity and selective removal of Congo red over aminated graphene oxide modified Mn-doped UiO-66 MOF. Powder Technology, 379, 407-416.
  11. Xie, J., Yamaguchi, T., & Oh, J. M. (2021). Synthesis of a mesoporous Mg–Al–mixed metal oxide with P123 template for effective removal of Congo red via aggregation-driven adsorption. Journal of Solid State Chemistry, 293, 121758.
  12. Al-Salihi, S., Jasim, A. M., Fidalgo, M. M., & Xing, Y. (2022). Removal of Congo red dyes from aqueous solutions by porous γ-alumina nanoshells. Chemosphere, 286, 131769.
  13. Gadekar, M. R., & Ahammed, M. M. (2016). Coagulation/flocculation process for dye removal using water treatment residuals: modelling through artificial neural networks. Desalination and Water Treatment, 57(55), 26392-26400.
  14. Moghaddam, S. S., Moghaddam, M. A., & Arami, M. (2010). Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology. Journal of hazardous materials, 175(1-3), 651-657.
  15. Chen, H., Zhang, Y. J., He, P. Y., Li, C. J., & Li, H. (2020). Coupling of self-supporting geopolymer membrane with intercepted Cr (III) for dye wastewater treatment by hybrid photocatalysis and membrane separation. Applied Surface Science, 515, 146024.
  16. Mo, J. H., Lee, Y. H., Kim, J., Jeong, J. Y., & Jegal, J. (2008). Treatment of dye aqueous solutions using nanofiltration polyamide composite membranes for the dye wastewater reuse. Dyes and Pigments, 76(2), 429-434.
  17. Aksu, Z. (2003). Reactive dye bioaccumulation by Saccharomyces cerevisiae. Process Biochemistry, 38(10), 1437-1444.
  18. Kaushik, P., & Malik, A. (2013). Comparative performance evaluation of Aspergillus lentulus for dye removal through bioaccumulation and biosorption. Environmental Science and Pollution Research, 20(5), 2882-2892.
  19. Sivakumar, D., Shankar, D., Kandaswamy, A. N., & Ammaiappan, M. (2014). Role of electro-dialysis and electro-dialysis cum adsorption for chromium (VI) reduction. Pollution Research, 33, 547-552.
  20. Nataraj, S. K., Hosamani, K. M., & Aminabhavi, T. M. (2009). Nanofiltration and reverse osmosis thin film composite membrane module for the removal of dye and salts from the simulated mixtures. Desalination, 249(1), 12-17.
  21. Abid, M. F., Zablouk, M. A., & Abid-Alameer, A. M. (2012). Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. Iranian Journal of Environmental Health science & Engineering, 9(1), 1-9.
  22. Joseph, J., Radhakrishnan, R. C., Johnson, J. K., Joy, S. P., & Thomas, J. (2020). Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate. Materials Chemistry and Physics, 242, 122488.
  23. Robinson, T., Chandran, B., & Nigam, P. (2002). Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Research, 36(11), 2824-2830.
  24. Gong, R., Ding, Y., Li, M., Yang, C., Liu, H., & Sun, Y. (2005). Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution. Dyes and Pigments, 64(3), 187-192.
  25. Bharathiraja, B., Jayamuthunagai, J., Praveenkumar, R., & Iyyappan, J. (2018). Phytoremediation techniques for the removal of dye in wastewater. In Bioremediation: applications for environmental protection and management (pp. 243-252). Springer, Singapore.
  26. Sarkar, P., Sarkar, S., Santra, D., Denrah, S., & Sarkar, M. (2022). Study of Isotherm and Kinetics for Remediation of Congo Red Using Nanocomposite Bead. Fine Chemical Engineering, 133-155.
  27. Hutchins, R.A., 1973. New method simplifies design of activated carbon systems. Chemical Engineering, 80, 133–138.
  28. Stoica-Guzun, A., Stroescu, M., Jinga, S. I., Mihalache, N., Botez, A., Matei, C., & Ionita, V. (2016). Box-Behnken experimental design for chromium (VI) ions removal by bacterial cellulose-magnetite composites. International Journal of Biological Macromolecules, 91, 1062-1072.
  29. Zhang, Z. H., Zhang, J. L., Liu, J. M., Xiong, Z. H., & Chen, X. (2016). Selective and competitive adsorption of azo dyes on the metal–organic framework ZIF-67. Water, Air, & Soil Pollution, 227(12), 1-12.
  30. Sarkar, S., & Sarkar, M. (2019). Ultrasound assisted batch operation for the adsorption of hexavalent chromium onto engineered nanobiocomposite. Heliyon, 5(4), e01491.
  31. Sarkar, M., Sarkar, P., Sarkar, S., & Denrah, S. (2021). Optimization and Feasibility of Alizarin Red S Retention on Iron-Loaded Cellulose Nanocomposite Bead. Nanoarchitectonics, 39-60.
  32. Sarkar, M., & Sarkar, S. (2017). Adsorption of Cr (VI) on Iron (III) cellulose nanocomposite bead. Environmental Processes, 4(4), 851-871.
  33. Ayawei, N., Ebelegi, A.N., & Wankasi, D. (2017). Modelling and interpretation of    adsorption isotherms. Journal of Chemistry, 2017.
  34. Sarkar, M., Santra, D., Denrah, S., Sarkar, S., & Sarkar, P. (2021). Study on the Efficiency of Metal Modified Bio–Nanocomposite Bead for Removal via Retention of Some Anthraquinone Dye. Challenges and Advances in Chemical Science Vol. 3, 60-78.
  35. Santra, D., & Sarkar, M. (2016). Optimization of process variables and mechanism of arsenic (V) adsorption onto cellulose nanocomposite. Journal of Molecular Liquids, 224, 290-302.
  36. Sarkar, M., Banerjee, A., Pramanick, P. P., & Sarkar, A. R. (2007). Design and operation of fixed bed laterite column for the removal of fluoride from water. Chemical Engineering Journal, 131(1-3), 329-335.
  37. Hethnawi, A., Nassar, N. N., Manasrah, A. D., & Vitale, G. (2017). Polyethylenimine-functionalized pyroxene nanoparticles embedded on Diatomite for adsorptive removal of dye from textile wastewater in a fixed-bed column. Chemical Engineering Journal, 320, 389-404.

Downloads

Published

2022-12-30

Issue

Section

Research Articles

How to Cite

[1]
Mitali Sarkar, Pankaj Sarkar, " Adsorption Characteristics of Some Azo Dye on Nanobiocomposite in a Column Operation, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 9, Issue 6, pp.353-361, November-December-2022. Available at doi : https://doi.org/10.32628/IJSRST229647