Optimal Threshold for Automatic Slice Thickness Measurement using Images of the American College of Radiology (ACR) CT Accreditation Phantom

Authors

  • Dewi A. Insiano  Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia.
  • Choirul Anam  Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia.
  • Eko Hidayanto  Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia.
  • Ariij Naufal  Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia.
  • Anisa T. Maya  Loka Pengamanan Fasilitas Kesehatan (LPFK) Surakarta Jl. Sindoro Raya Jl. Ring Road No. km 1, Mojosongo, Kec. Jebres, Surakarta City 57127, Central Java, Indonesia.

DOI:

https://doi.org//10.32628/IJSRST229651

Keywords:

CT scan, slice thickness, ACR CT accreditation phantom, threshold value

Abstract

This study aims to find the optimum threshold for the automatic measurement of slice thickness using ACR CT accreditation phantom. The ACR CT accreditation phantom was scanned using Siemens Somatom Perspective CT scanner. The nominal slice thicknesses of 1.5, 3, 5, 6, 7, and 10 mm were investigated. Our automated method was developed to obtain accurate slice thickness values. Several threshold values from 0.10 to 0.50 with increment of 0.05 to find optimum value were investigated. The results obtained from each threshold were then compared with the nominal slice thickness to determine the optimal threshold value. It is found that the optimum threshold in the automatic measurement of slice thickness with nominal slice thickness values from 1.5 to 10.0 mm is from 0.35 to 0.40. Using this range, the different between the nominal slice thickness and measured slice thickness is within 0.5 mm. The optimal threshold for automatic slice thickness measurement has been determined. The optimal threshold would lead to more accurately automated slice thickness measurement.

References

  1. Morigi MP, Casali F, Bettuzzi M, Brancaccio R, and D’Errico V. Application of X-ray Computed Tomography to Cultural Heritage diagnostics. Applied Physics A. 2010;100(3):653-661.
  2. Rossi M, Casali F, Chirco P, Morigi MP, Nava E, Querzola E, and Zanarini M. X-Ray 3D Computed Tomography of Bronze Archaeological Samples. IEEE Transactions on Nuclear Science. 1999;46(4):897–903.
  3. Abuhaimed A, Martin CJ. A Monte Carlo investigation of dose length product of cone beam computed tomography scans. J Radiol Prot. 2020;40(2):393-409.
  4. Hricak H, Brenner DJ, Adelstein SJ, et al. Managing radiation use in medical imaging: a multifaceted challenge. Radiology. 2011;258(3):889-905.
  5. Power SP, Moloney F, Twomey M, James K, O'Connor OJ, Maher MM. Computed tomography and patient risk: Facts, perceptions and uncertainties. World J Radiol. 2016;8(12):902-915.
  6. Hamaguchi Y, Kaido T, Okumura S, et al. Proposal for new diagnostic criteria for low skeletal muscle mass based on computed tomography imaging in Asian adults. Nutrition. 2016;32(11-12):1200-1205.
  7. Mansour Z, Mokhtar A, Sarhan A, Ahmed MT, and El-Diasty T. Quality control of CT image using American College of Radiology (ACR) phantom. The Egyptian Journal of Radiology and Nuclear Medicine. 2016;47(4):1665–1671.
  8. Foy JJ, Al-Hallaq HA, Grekoski V, et al. Harmonization of radiomic feature variability resulting from differences in CT image acquisition and reconstruction: assessment in a cadaveric liver. Phys Med Biol. 2020;65(20):205008.
  9. Tian C, Zhang C, Zhang H, Xie D, Jin Y. Spatial resolution in photoacoustic computed tomography. Rep Prog Phys. 2021;84(3):10.1088/1361-6633/abdab9.
  10. Anam C, Fujibuchi T, Haryanto F, Budi WS, Sutanto H, Adi K, Muhlisin Z, and Dougherty G. Automated MTF measurement in CT images with a simple wire phantom. Pol J Med Phys Eng. 2019;25(3):179-187.
  11. Singh KK, Bajpai MK, and Pandey RK. A novel approach for enhancement of geometric and contrast resolution properties of low contrast images. IEEE/CAA Journal of Automatica Sinica. 2018;5(2):628-638.
  12. Mulyadin, Dewang S, Abdullah B, and Tahir D. Study of Image Quality from CT Scanner Multi-Detector by using Americans College of Radiology (ACR) Phantom. J Phys: Conf Ser. 2018;979: 012080.
  13. Lasiyah N, Anam C, Hidayanto E, Dougherty G. Automated procedure for slice thickness verification of computed tomography images: Variations of slice thickness, position from iso-center, and reconstruction filter. J Appl Clin Med Phys. 2021;22(7):313-321.
  14. Ihalainen TM, Lönnroth NT, Peltonen JI, et al. MRI quality assurance using the ACR phantom in a multi-unit imaging center. Acta Oncol. 2011;50(6):966-972.
  15. Bissonnette JP, Balter PA, Dong L, et al. Quality assurance for image-guided radiation therapy utilizing CT-based technologies: a report of the AAPM TG-179. Med Phys. 2012;39(4):1946-1963.
  16. Watanabe H, Honda E, Tetsumura A, Kurabayashi T. A comparative study for spatial resolution and subjective image characteristics of a multi-slice CT and a cone-beam CT for dental use. Eur J Radiol. 2011;77(3):397-402.
  17. Cai B, Laugeman E, Mazur TR, et al. Characterization of a prototype rapid kilovoltage x-ray image guidance system designed for a ring shape radiation therapy unit. Med Phys. 2019;46(3):1355-1370.
  18. Sofiyatun S, Anam C, Zahro UM, Rukmana DA, and Dougherty G. An Automated Measurement of Image Slice Thickness of Computed Tomography. Atom Indonesia. 2021;47(2):121-128.
  19. Khodajou-Chokami H, Hosseini SA, Ghorbanzadeh M, and Mohammadi M. QCT: A Measuring Tool Dedicated to the Estimation of Image Parameters for Quality Assurance/Quality Control Programs of CT Scanners. 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA). 2020:1-6.
  20. Adjeiwaah M, Garpebring A, Nyholm T. Sensitivity analysis of different quality assurance methods for magnetic resonance imaging in radiotherapy. Phys Imaging Radiat Oncol. 2020;13:21-27.
  21. Anam C, Naufal A, Fujibuchi T, Matsubara K, Dougherty G. Automated development of the contrast-detail curve based on statistical low-contrast detectability in CT images. J Appl Clin Med Phys. 2022;23(9):e13719.
  22. Alshipli M & Kabir NA. Effect of Slice Thickness on Image Noise and Diagnostic Content of Single-Source-Dual Energy Computed Tomography. J Phys: Conf Ser. 2017;851:012005.
  23. Widyanti ER, Anam C, Hidayanto E, and Haekal M. The impact of noise on the results of automated slice sensitivity profile measurements in computed tomography. International Journal of Progressive Sciences and Technologies. 2021; 26(2):657-663.
  24. Anam C, Naufal A, Sutanto H, and Dougherty G. Computational phantoms for investigating impact of noise magnitude on modulation transfer function. Indonesian Journal of Electrical Engineering and Computer Science. 2022;27(3):1428-1437.
  25. Zaki MM, Hegazy EA, Abdelhamid MI, and El-Mogy SA. The Role of Parallel Imaging Technique in Decreasing Geometric Distortion Artifact in Diffusion Weighted Imaging of the Brain. The Egyptian Journal of Radiology and Nuclear Medicine. 2018;49(3):732–736.
  26. Hsieh J. Adaptive streak artifact reduction in computed tomography resulting from excessive x-ray photon noise. Med Phys. 1998;25(11):2139-2147.

Downloads

Published

2022-12-30

Issue

Section

Research Articles

How to Cite

[1]
Dewi A. Insiano, Choirul Anam, Eko Hidayanto, Ariij Naufal, Anisa T. Maya, " Optimal Threshold for Automatic Slice Thickness Measurement using Images of the American College of Radiology (ACR) CT Accreditation Phantom, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 9, Issue 6, pp.437-444, November-December-2022. Available at doi : https://doi.org/10.32628/IJSRST229651