Machine Learning Efforts That Enhance Personalized Patient Care and Chronic Disease Management

Authors

  • Adepeju Ayotunde Adeyinka  Department of Data Science and Engineering, North Carolina A&T State University, North Carolina, USA.
  • Yejide Lamina  Lagos State University, College of Medicine, Lagos, Nigeria
  • Obah Edom Tawo  Southern Alberta Institute of Technology, Alberta, Canada (SAIT).
  • Yewande Iyimide Adeyeye  Dumfries and Galloway royal infirmary, Dumfries, Scotland
  • Andrew Yaw Minkah  Department of Healthcare Administration, University of the Potomac

DOI:

https://doi.org/10.32628/IJSRST2302551

Keywords:

Machine Learning, Personalized Patient Care, Chronic Disease Management

Abstract

The growing burden of chronic diseases has underscored the urgent need for personalized, data-driven approaches to healthcare delivery. Machine learning (ML) has emerged as a transformative technology capable of enhancing chronic disease management through predictive analytics, real-time monitoring, and individualized treatment optimization. This review examines the role of ML in advancing personalized patient care by exploring foundational techniques such as supervised and unsupervised learning, deep neural networks, and reinforcement learning. It highlights practical applications across diabetes, cardiovascular conditions, respiratory disorders, and cancer survivorship, emphasizing the value of ML in risk prediction, medication adjustment, and remote monitoring. Additionally, the paper discusses key enablers of personalized care, including patient stratification, precision dosing, and the integration of wearable devices and digital platforms. Emerging innovations such as federated learning, explainable AI, multimodal data fusion, and digital twin systems are explored for their potential to support secure, transparent, and context-aware healthcare delivery. The review also addresses critical challenges related to bias, data privacy, clinical integration, and regulatory oversight. Ultimately, this work advocates for a multidisciplinary framework that combines technological innovation with policy reform to ensure equitable, scalable, and sustainable deployment of machine learning in personalized chronic disease care.

References

  1. Ahmad, M. A., Eckert, C., & Teredesai, A. (2021). Interpretable machine learning in healthcare. Proceedings of the 2021 ACM Conference on Health, Inference, and Learning, 295–296. https://doi.org/10.1145/3450439.3451867
  2. Alhashmi, S. F., AlGhawi, I. A., & Abou El-Magd, M. A. (2022). Role of IoT-enabled wearable devices in chronic disease management: A review of recent applications and challenges. Healthcare Technology Letters, 9(3), 56–64. https://doi.org/10.1049/htl2.12034
  3. Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., ... & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012
  4. Attia, Z. I., Noseworthy, P. A., Lopez-Jimenez, F., Asirvatham, S. J., Deshmukh, A. J., Gersh, B. J., ... & Friedman, P. A. (2019). An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: A retrospective analysis of outcome prediction. The Lancet, 394(10201), 861–867. https://doi.org/10.1016/S0140-6736(19)31721-0
  5. Björnsson, B., Borrebaeck, C., Elander, N., Gasslander, T., Gawel, D. R., Gustafsson, M., ... & Tegnér, J. (2020). Digital twins to personalize medicine. Genome Medicine, 12, 4. https://doi.org/10.1186/s13073-019-0701-3
  6. Chen, M., Hao, Y., Cai, Y., Wang, Y., & Zhang, L. (2019). Transfer learning for medical imaging classification: A literature review. Journal of Biomedical Informatics, 97, 103258. https://doi.org/10.1016/j.jbi.2019.103258
  7. Chen, M., Hao, Y., Hwang, K., Wang, L., & Wang, L. (2021). Disease prediction by machine learning over big data from healthcare communities. IEEE Access, 5, 8869–8879. https://doi.org/10.1109/ACCESS.2021.3067890
  8. Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W. F., & Sun, J. (2020). Generating multi-label discrete patient records using generative adversarial networks. Journal of the American Medical Informatics Association, 27(3), 393–402. https://doi.org/10.1093/jamia/ocz237
  9. Churpek, M. M., Adhikari, R., & Edelson, D. P. (2019). The value of vital sign trends for detecting clinical deterioration on the wards. Resuscitation, 139, 1–5. https://doi.org/10.1016/j.resuscitation.2019.04.002
  10. Contreras, I., & Vehi, J. (2018). Artificial intelligence for diabetes management and decision support: Literature review. Journal of Medical Internet Research, 20(5), e10775. https://doi.org/10.2196/10775
  11. Desai, R. J., Franklin, J. M., & Schneeweiss, S. (2020). Learning healthcare systems using real-world data: The impact of data quality and methodological considerations. Clinical Pharmacology & Therapeutics, 107(4), 834–837. https://doi.org/10.1002/cpt.1741
  12. Dinh-Le, C., Chuang, R., Li, E. C., & Schmid, C. H. (2019). Wearable health technology and electronic health record integration: Scoping review and future directions. JMIR MHealth and UHealth, 7(9), e12861. https://doi.org/10.2196/12861
  13. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z
  14. Fitzpatrick, K. K., Darcy, A., & Vierhile, M. (2021). Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): A randomized controlled trial. JMIR Mental Health, 8(2), e21727. https://doi.org/10.2196/21727
  15. Gao, Y., Cui, Y., Zhang, R., & Hu, J. (2020). Adaptive feedback system for personalized health monitoring using reinforcement learning. IEEE Access, 8, 123764–123774. https://doi.org/10.1109/ACCESS.2020.3007312
  16. Gerke, S., Minssen, T., & Cohen, I. G. (2020). Ethical and legal challenges of artificial intelligence-driven healthcare. In Artificial Intelligence in Healthcare (pp. 295–336). Academic Press. https://doi.org/10.1016/B978-0-12-818438-7.00012-5
  17. Gimeno-Santos, E., Raste, Y., Demeyer, H., van Remoortel, H., Hornikx, M., Vogiatzis, I., ... & Troosters, T. (2020). The PROactive instruments to measure physical activity in patients with chronic obstructive pulmonary disease. European Respiratory Journal, 46(4), 988–1000. https://doi.org/10.1183/13993003.00150-2015
  18. Islam, M. M., Karray, F., Alhajj, R., & Zeng, J. (2021). A review on deep learning techniques for the diagnosis of novel coronavirus (COVID-19). IEEE Access, 9, 30551–30572. https://doi.org/10.1109/ACCESS.2021.3058538
  19. Jameson, J. L., & Longo, D. L. (2015). Precision medicine—Personalized, problematic, and promising. The New England Journal of Medicine, 372(23), 2229–2234. https://doi.org/10.1056/NEJMsb1503104
  20. Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230–243. https://doi.org/10.1136/svn-2017-000101
  21. Johnson, K. W., Shameer, K., Glicksberg, B. S., Readhead, B., Sengupta, P. P., Björkegren, J. L. M., ... & Dudley, J. T. (2022). Machine learning and cardiovascular disease: Addressing bias and evaluating clinical utility. Nature Reviews Cardiology, 19(5), 272–287. https://doi.org/10.1038/s41569-021-00680-3
  22. Kavakiotis, I., Tsave, O., Salifoglou, A., Maglaveras, N., Vlahavas, I., & Chouvarda, I. (2017). Machine learning and data mining methods in diabetes research. Computational and Structural Biotechnology Journal, 15, 104–116. https://doi.org/10.1016/j.csbj.2016.12.005
  23. Khourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., & Fotiadis, D. I. (2015). Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal, 13, 8–17. https://doi.org/10.1016/j.csbj.2014.11.005
  24. Khurshid, S., Friedman, S. N., Reeder, C., Samad, Z., Wang, Y., MacRae, C. A., ... & Lubitz, S. A. (2021). Machine learning to predict the risk of incident heart failure. Circulation: Cardiovascular Quality and Outcomes, 14(2), e006569. https://doi.org/10.1161/CIRCOUTCOMES.120.006569
  25. Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50–60. https://doi.org/10.1109/MSP.2020.2975749
  26. Li, X., Liu, J., & Zhang, X. (2019). Machine learning approaches for predicting drug responses in cancer: Methods and applications. BioMed Research International, 2019, 9238286. https://doi.org/10.1155/2019/9238286
  27. Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2016). Deep learning for healthcare: Review, opportunities and challenges. Briefings in Bioinformatics, 19(6), 1236–1246. https://doi.org/10.1093/bib/bbx044
  28. Nemati, S., Ghassemi, M. M., & Clifford, G. D. (2018). Optimal medication dosing from suboptimal clinical examples: A deep reinforcement learning approach. Proceedings of the 2018 IEEE EMBS International Conference on Biomedical & Health Informatics, 79–82. https://doi.org/10.1109/BHI.2018.8333388
  29. Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future—Big data, machine learning, and clinical medicine. The New England Journal of Medicine, 375(13), 1216–1219. https://doi.org/10.1056/NEJMp1606181
  30. Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447–453. https://doi.org/10.1126/science.aax2342
  31. Pons, E., Braun, L. M. M., Hunink, M. G. M., & Kors, J. A. (2020). Natural language processing in radiology: A systematic review. Radiology, 293(3), 526–535. https://doi.org/10.1148/radiol.2019192370
  32. Rajkomar, A., Dean, J., & Kohane, I. (2018). Machine learning in medicine. The New England Journal of Medicine, 380(14), 1347–1359. https://doi.org/10.1056/NEJMra1814259
  33. Rao, A., Kim, J., Kamineni, M., Pang, M., Lie, W., Tison, G. H., ... & Majumder, M. P. (2022). Machine learning and the future of real-time clinical decision support: A review of opportunities and challenges. NPJ Digital Medicine, 5, 48. https://doi.org/10.1038/s41746-022-00606-2
  34. Reddy, S., Allan, S., Coghlan, S., & Cooper, P. (2020). A governance model for the application of AI in health care. Journal of the American Medical Informatics Association, 27(3), 491–497. https://doi.org/10.1093/jamia/ocz192
  35. Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H. R., Albarqouni, S., ... & Cardoso, M. J. (2020). The future of digital health with federated learning. NPJ Digital Medicine, 3, 119. https://doi.org/10.1038/s41746-020-00323-1
  36. Rojas, E., Munoz-Gama, J., Sepúlveda, M., & Capurro, D. (2022). Process mining in healthcare: A literature review. Journal of Biomedical Informatics, 102, 103358. https://doi.org/10.1016/j.jbi.2022.103358
  37. Roscher, R., Bohn, B., Duarte, M. F., & Garcke, J. (2020). Explainable machine learning for scientific insights and discoveries. IEEE Access, 8, 42200–42216. https://doi.org/10.1109/ACCESS.2020.2976199
  38. Senders, J. T., Zaki, M. M., Karhade, A. V., Chang, B., Gormley, W. B., Broekman, M. L., & Smith, T. R. (2020). Natural language processing for automated quantification of unstructured imaging reports in cancer care. Cancer Medicine, 9(1), 288–296. https://doi.org/10.1002/cam4.2690
  39. Sharma, A., Harrington, R. A., McClellan, M. B., Turakhia, M. P., & Eapen, Z. J. (2022). Machine learning applications in clinical care: Real-world implementation and barriers. Journal of the American College of Cardiology: Digital Health, 1(1), 1–13. https://doi.org/10.1016/j.jacod.2021.12.001
  40. Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE Journal of Biomedical and Health Informatics, 22(5), 1589–1604. https://doi.org/10.1109/JBHI.2017.2767063
  41. Sun, W., Wang, Y., & Zhang, T. (2022). An overview of machine learning applications in healthcare informatics. Journal of Biomedical Informatics, 127, 104004. https://doi.org/10.1016/j.jbi.2022.104004
  42. Sutton, R. T., Pincock, D., Baumgart, D. C., Sadowski, D. C., Fedorak, R. N., & Kroeker, K. I. (2020). An overview of clinical decision support systems: Benefits, risks, and strategies for success. NPJ Digital Medicine, 3, 17. https://doi.org/10.1038/s41746-020-0221-y
  43. Tjoa, E., & Guan, C. (2020). A survey on explainable artificial intelligence (XAI): Toward medical XAI. IEEE Transactions on Neural Networks and Learning Systems, 32(11), 4793–4813. https://doi.org/10.1109/TNNLS.2020.3027314
  44. Topalovic, D., Das, N., Burgel, P. R., & Janssens, W. (2019). Artificial intelligence and machine learning in lung health: The first steps in clinical implementation. Breathe, 15(4), 256–262. https://doi.org/10.1183/20734735.0329-2019
  45. Topol, E. (2019). Deep medicine: How artificial intelligence can make healthcare human again. Basic Books.
  46. U.S. Food and Drug Administration. (2021). Artificial intelligence/machine learning (AI/ML)-based software as a medical device (SaMD) action plan. https://www.fda.gov/media/145022/download
  47. Wang, F., Casalino, L. P., & Khullar, D. (2022). Deep learning in clinical medicine: A practical introduction. NPJ Digital Medicine, 5, 145. https://doi.org/10.1038/s41746-022-00667-3
  48. Wang, L., Duan, Y., & Wang, H. (2021). Real-time remote health monitoring with wearable sensors in chronic disease management: A review. Journal of Healthcare Engineering, 2021, 6619267. https://doi.org/10.1155/2021/6619267
  49. Wang, L., Lei, D., & Zhang, Z. (2020). Personalized drug recommendation using generative adversarial networks with recurrent units. Journal of Biomedical Informatics, 106, 103428. https://doi.org/10.1016/j.jbi.2020.103428
  50. Wang, L., Li, Y., & Hu, J. (2019). Predicting cancer prognosis using an integrated deep learning framework based on patient similarity. BMC Medical Informatics and Decision Making, 19(Suppl 2), 91. https://doi.org/10.1186/s12911-019-0793-3
  51. World Health Organization. (2021). Noncommunicable diseases. https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases
  52. Xu, J., Glicksberg, B. S., Su, C., Walker, P., & Chen, R. (2021). Federated learning for healthcare informatics. Journal of Healthcare Informatics Research, 5(1), 1–19. https://doi.org/10.1007/s41666-020-00082-4
  53. Yala, A., Mikhael, P. G., Strand, F., Lin, J., Smith, K., & Cirelli, C. (2021). Toward robust mammography-based models for breast cancer risk. Science Translational Medicine, 13(578), eaba4373. https://doi.org/10.1126/scitranslmed.aba4373
  54. Zhou, Y., Wang, F., & Hu, J. (2019). Multimodal data integration by deep learning for chronic disease prediction. IEEE Journal of Biomedical and Health Informatics, 23(3), 1347–1356. https://doi.org/10.1109/JBHI.2018.2858779
  55. Zhu, T., Li, K., Gu, L., Zhang, X., & Zhang, X. (2022). A deep learning framework for diabetes prediction based on CGM and lifestyle data. Artificial Intelligence in Medicine, 128, 102310. https://doi.org/10.1016/j.artmed.2022.102310

Downloads

Published

2022-04-30

Issue

Section

Research Articles

How to Cite

[1]
Adepeju Ayotunde Adeyinka, Yejide Lamina, Obah Edom Tawo, Yewande Iyimide Adeyeye, Andrew Yaw Minkah "Machine Learning Efforts That Enhance Personalized Patient Care and Chronic Disease Management" International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 9, Issue 2, pp.647-671, March-April-2022. Available at doi : https://doi.org/10.32628/IJSRST2302551