Machine Learning Efforts That Enhance Personalized Patient Care and Chronic Disease Management
DOI:
https://doi.org/10.32628/IJSRST2302551Keywords:
Machine Learning, Personalized Patient Care, Chronic Disease ManagementAbstract
The growing burden of chronic diseases has underscored the urgent need for personalized, data-driven approaches to healthcare delivery. Machine learning (ML) has emerged as a transformative technology capable of enhancing chronic disease management through predictive analytics, real-time monitoring, and individualized treatment optimization. This review examines the role of ML in advancing personalized patient care by exploring foundational techniques such as supervised and unsupervised learning, deep neural networks, and reinforcement learning. It highlights practical applications across diabetes, cardiovascular conditions, respiratory disorders, and cancer survivorship, emphasizing the value of ML in risk prediction, medication adjustment, and remote monitoring. Additionally, the paper discusses key enablers of personalized care, including patient stratification, precision dosing, and the integration of wearable devices and digital platforms. Emerging innovations such as federated learning, explainable AI, multimodal data fusion, and digital twin systems are explored for their potential to support secure, transparent, and context-aware healthcare delivery. The review also addresses critical challenges related to bias, data privacy, clinical integration, and regulatory oversight. Ultimately, this work advocates for a multidisciplinary framework that combines technological innovation with policy reform to ensure equitable, scalable, and sustainable deployment of machine learning in personalized chronic disease care.
References
- Ahmad, M. A., Eckert, C., & Teredesai, A. (2021). Interpretable machine learning in healthcare. Proceedings of the 2021 ACM Conference on Health, Inference, and Learning, 295–296. https://doi.org/10.1145/3450439.3451867
- Alhashmi, S. F., AlGhawi, I. A., & Abou El-Magd, M. A. (2022). Role of IoT-enabled wearable devices in chronic disease management: A review of recent applications and challenges. Healthcare Technology Letters, 9(3), 56–64. https://doi.org/10.1049/htl2.12034
- Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., ... & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012
- Attia, Z. I., Noseworthy, P. A., Lopez-Jimenez, F., Asirvatham, S. J., Deshmukh, A. J., Gersh, B. J., ... & Friedman, P. A. (2019). An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: A retrospective analysis of outcome prediction. The Lancet, 394(10201), 861–867. https://doi.org/10.1016/S0140-6736(19)31721-0
- Björnsson, B., Borrebaeck, C., Elander, N., Gasslander, T., Gawel, D. R., Gustafsson, M., ... & Tegnér, J. (2020). Digital twins to personalize medicine. Genome Medicine, 12, 4. https://doi.org/10.1186/s13073-019-0701-3
- Chen, M., Hao, Y., Cai, Y., Wang, Y., & Zhang, L. (2019). Transfer learning for medical imaging classification: A literature review. Journal of Biomedical Informatics, 97, 103258. https://doi.org/10.1016/j.jbi.2019.103258
- Chen, M., Hao, Y., Hwang, K., Wang, L., & Wang, L. (2021). Disease prediction by machine learning over big data from healthcare communities. IEEE Access, 5, 8869–8879. https://doi.org/10.1109/ACCESS.2021.3067890
- Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W. F., & Sun, J. (2020). Generating multi-label discrete patient records using generative adversarial networks. Journal of the American Medical Informatics Association, 27(3), 393–402. https://doi.org/10.1093/jamia/ocz237
- Churpek, M. M., Adhikari, R., & Edelson, D. P. (2019). The value of vital sign trends for detecting clinical deterioration on the wards. Resuscitation, 139, 1–5. https://doi.org/10.1016/j.resuscitation.2019.04.002
- Contreras, I., & Vehi, J. (2018). Artificial intelligence for diabetes management and decision support: Literature review. Journal of Medical Internet Research, 20(5), e10775. https://doi.org/10.2196/10775
- Desai, R. J., Franklin, J. M., & Schneeweiss, S. (2020). Learning healthcare systems using real-world data: The impact of data quality and methodological considerations. Clinical Pharmacology & Therapeutics, 107(4), 834–837. https://doi.org/10.1002/cpt.1741
- Dinh-Le, C., Chuang, R., Li, E. C., & Schmid, C. H. (2019). Wearable health technology and electronic health record integration: Scoping review and future directions. JMIR MHealth and UHealth, 7(9), e12861. https://doi.org/10.2196/12861
- Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z
- Fitzpatrick, K. K., Darcy, A., & Vierhile, M. (2021). Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): A randomized controlled trial. JMIR Mental Health, 8(2), e21727. https://doi.org/10.2196/21727
- Gao, Y., Cui, Y., Zhang, R., & Hu, J. (2020). Adaptive feedback system for personalized health monitoring using reinforcement learning. IEEE Access, 8, 123764–123774. https://doi.org/10.1109/ACCESS.2020.3007312
- Gerke, S., Minssen, T., & Cohen, I. G. (2020). Ethical and legal challenges of artificial intelligence-driven healthcare. In Artificial Intelligence in Healthcare (pp. 295–336). Academic Press. https://doi.org/10.1016/B978-0-12-818438-7.00012-5
- Gimeno-Santos, E., Raste, Y., Demeyer, H., van Remoortel, H., Hornikx, M., Vogiatzis, I., ... & Troosters, T. (2020). The PROactive instruments to measure physical activity in patients with chronic obstructive pulmonary disease. European Respiratory Journal, 46(4), 988–1000. https://doi.org/10.1183/13993003.00150-2015
- Islam, M. M., Karray, F., Alhajj, R., & Zeng, J. (2021). A review on deep learning techniques for the diagnosis of novel coronavirus (COVID-19). IEEE Access, 9, 30551–30572. https://doi.org/10.1109/ACCESS.2021.3058538
- Jameson, J. L., & Longo, D. L. (2015). Precision medicine—Personalized, problematic, and promising. The New England Journal of Medicine, 372(23), 2229–2234. https://doi.org/10.1056/NEJMsb1503104
- Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230–243. https://doi.org/10.1136/svn-2017-000101
- Johnson, K. W., Shameer, K., Glicksberg, B. S., Readhead, B., Sengupta, P. P., Björkegren, J. L. M., ... & Dudley, J. T. (2022). Machine learning and cardiovascular disease: Addressing bias and evaluating clinical utility. Nature Reviews Cardiology, 19(5), 272–287. https://doi.org/10.1038/s41569-021-00680-3
- Kavakiotis, I., Tsave, O., Salifoglou, A., Maglaveras, N., Vlahavas, I., & Chouvarda, I. (2017). Machine learning and data mining methods in diabetes research. Computational and Structural Biotechnology Journal, 15, 104–116. https://doi.org/10.1016/j.csbj.2016.12.005
- Khourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., & Fotiadis, D. I. (2015). Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal, 13, 8–17. https://doi.org/10.1016/j.csbj.2014.11.005
- Khurshid, S., Friedman, S. N., Reeder, C., Samad, Z., Wang, Y., MacRae, C. A., ... & Lubitz, S. A. (2021). Machine learning to predict the risk of incident heart failure. Circulation: Cardiovascular Quality and Outcomes, 14(2), e006569. https://doi.org/10.1161/CIRCOUTCOMES.120.006569
- Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50–60. https://doi.org/10.1109/MSP.2020.2975749
- Li, X., Liu, J., & Zhang, X. (2019). Machine learning approaches for predicting drug responses in cancer: Methods and applications. BioMed Research International, 2019, 9238286. https://doi.org/10.1155/2019/9238286
- Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2016). Deep learning for healthcare: Review, opportunities and challenges. Briefings in Bioinformatics, 19(6), 1236–1246. https://doi.org/10.1093/bib/bbx044
- Nemati, S., Ghassemi, M. M., & Clifford, G. D. (2018). Optimal medication dosing from suboptimal clinical examples: A deep reinforcement learning approach. Proceedings of the 2018 IEEE EMBS International Conference on Biomedical & Health Informatics, 79–82. https://doi.org/10.1109/BHI.2018.8333388
- Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future—Big data, machine learning, and clinical medicine. The New England Journal of Medicine, 375(13), 1216–1219. https://doi.org/10.1056/NEJMp1606181
- Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447–453. https://doi.org/10.1126/science.aax2342
- Pons, E., Braun, L. M. M., Hunink, M. G. M., & Kors, J. A. (2020). Natural language processing in radiology: A systematic review. Radiology, 293(3), 526–535. https://doi.org/10.1148/radiol.2019192370
- Rajkomar, A., Dean, J., & Kohane, I. (2018). Machine learning in medicine. The New England Journal of Medicine, 380(14), 1347–1359. https://doi.org/10.1056/NEJMra1814259
- Rao, A., Kim, J., Kamineni, M., Pang, M., Lie, W., Tison, G. H., ... & Majumder, M. P. (2022). Machine learning and the future of real-time clinical decision support: A review of opportunities and challenges. NPJ Digital Medicine, 5, 48. https://doi.org/10.1038/s41746-022-00606-2
- Reddy, S., Allan, S., Coghlan, S., & Cooper, P. (2020). A governance model for the application of AI in health care. Journal of the American Medical Informatics Association, 27(3), 491–497. https://doi.org/10.1093/jamia/ocz192
- Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H. R., Albarqouni, S., ... & Cardoso, M. J. (2020). The future of digital health with federated learning. NPJ Digital Medicine, 3, 119. https://doi.org/10.1038/s41746-020-00323-1
- Rojas, E., Munoz-Gama, J., Sepúlveda, M., & Capurro, D. (2022). Process mining in healthcare: A literature review. Journal of Biomedical Informatics, 102, 103358. https://doi.org/10.1016/j.jbi.2022.103358
- Roscher, R., Bohn, B., Duarte, M. F., & Garcke, J. (2020). Explainable machine learning for scientific insights and discoveries. IEEE Access, 8, 42200–42216. https://doi.org/10.1109/ACCESS.2020.2976199
- Senders, J. T., Zaki, M. M., Karhade, A. V., Chang, B., Gormley, W. B., Broekman, M. L., & Smith, T. R. (2020). Natural language processing for automated quantification of unstructured imaging reports in cancer care. Cancer Medicine, 9(1), 288–296. https://doi.org/10.1002/cam4.2690
- Sharma, A., Harrington, R. A., McClellan, M. B., Turakhia, M. P., & Eapen, Z. J. (2022). Machine learning applications in clinical care: Real-world implementation and barriers. Journal of the American College of Cardiology: Digital Health, 1(1), 1–13. https://doi.org/10.1016/j.jacod.2021.12.001
- Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE Journal of Biomedical and Health Informatics, 22(5), 1589–1604. https://doi.org/10.1109/JBHI.2017.2767063
- Sun, W., Wang, Y., & Zhang, T. (2022). An overview of machine learning applications in healthcare informatics. Journal of Biomedical Informatics, 127, 104004. https://doi.org/10.1016/j.jbi.2022.104004
- Sutton, R. T., Pincock, D., Baumgart, D. C., Sadowski, D. C., Fedorak, R. N., & Kroeker, K. I. (2020). An overview of clinical decision support systems: Benefits, risks, and strategies for success. NPJ Digital Medicine, 3, 17. https://doi.org/10.1038/s41746-020-0221-y
- Tjoa, E., & Guan, C. (2020). A survey on explainable artificial intelligence (XAI): Toward medical XAI. IEEE Transactions on Neural Networks and Learning Systems, 32(11), 4793–4813. https://doi.org/10.1109/TNNLS.2020.3027314
- Topalovic, D., Das, N., Burgel, P. R., & Janssens, W. (2019). Artificial intelligence and machine learning in lung health: The first steps in clinical implementation. Breathe, 15(4), 256–262. https://doi.org/10.1183/20734735.0329-2019
- Topol, E. (2019). Deep medicine: How artificial intelligence can make healthcare human again. Basic Books.
- U.S. Food and Drug Administration. (2021). Artificial intelligence/machine learning (AI/ML)-based software as a medical device (SaMD) action plan. https://www.fda.gov/media/145022/download
- Wang, F., Casalino, L. P., & Khullar, D. (2022). Deep learning in clinical medicine: A practical introduction. NPJ Digital Medicine, 5, 145. https://doi.org/10.1038/s41746-022-00667-3
- Wang, L., Duan, Y., & Wang, H. (2021). Real-time remote health monitoring with wearable sensors in chronic disease management: A review. Journal of Healthcare Engineering, 2021, 6619267. https://doi.org/10.1155/2021/6619267
- Wang, L., Lei, D., & Zhang, Z. (2020). Personalized drug recommendation using generative adversarial networks with recurrent units. Journal of Biomedical Informatics, 106, 103428. https://doi.org/10.1016/j.jbi.2020.103428
- Wang, L., Li, Y., & Hu, J. (2019). Predicting cancer prognosis using an integrated deep learning framework based on patient similarity. BMC Medical Informatics and Decision Making, 19(Suppl 2), 91. https://doi.org/10.1186/s12911-019-0793-3
- World Health Organization. (2021). Noncommunicable diseases. https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases
- Xu, J., Glicksberg, B. S., Su, C., Walker, P., & Chen, R. (2021). Federated learning for healthcare informatics. Journal of Healthcare Informatics Research, 5(1), 1–19. https://doi.org/10.1007/s41666-020-00082-4
- Yala, A., Mikhael, P. G., Strand, F., Lin, J., Smith, K., & Cirelli, C. (2021). Toward robust mammography-based models for breast cancer risk. Science Translational Medicine, 13(578), eaba4373. https://doi.org/10.1126/scitranslmed.aba4373
- Zhou, Y., Wang, F., & Hu, J. (2019). Multimodal data integration by deep learning for chronic disease prediction. IEEE Journal of Biomedical and Health Informatics, 23(3), 1347–1356. https://doi.org/10.1109/JBHI.2018.2858779
- Zhu, T., Li, K., Gu, L., Zhang, X., & Zhang, X. (2022). A deep learning framework for diabetes prediction based on CGM and lifestyle data. Artificial Intelligence in Medicine, 128, 102310. https://doi.org/10.1016/j.artmed.2022.102310
Downloads
Published
Issue
Section
License
Copyright (c) IJSRST

This work is licensed under a Creative Commons Attribution 4.0 International License.