Development of Newer Bioactive Triazolopyrimidines

Authors

  • Jayanti S. Rajora  Department of Chemistry, Government Science Collge-Gandhinagar, Gujarat, India

Keywords:

Pyrimidines, Triazolopyrimidines, Biological Activity

Abstract

Main objective of this paper is to determine the modulus of elasticity of fibre reinforced concrete with the addition of bottom ash .And also to determine the strength of concrete by using polyolefin and steel fibres. Pyrimidine derivatives have been of enormous interest due to their wide spectrum biological activity profile. Among pyrimidine derivatives, triazolopyrimidines have attracted significant attention from the bioactivity point of view. The present paper covers a brief report of approaches to newer bioactive triazolopyrimidine derivatives.

References

  1. (a) Shaban, M., & Morgaan, A. (1999). The Chemistry of 1,2,4-Triazolopyrimidines I: 1,2,4-Triazolo[4,3-a]Pyrimidines, Advances in Heterocyclic Chemistry, 73, 131-176, (b) Shaban, M., & Morgaan, A. (1999). The Chemistry of 1,2,4-Triazolopyrimidines I: 1,2,4-Triazolo[4,3-c]Pyrimidines, Advances in Heterocyclic Chemistry, 75, 243-281.
  2. Shaban, M., & Morgaan, A. (2000). Chemistry of 1,2,4-triazolopyrimidines III: 1,2,4-triazolo[1,5-c]pyrimidines. Advances in Heterocyclic Chemistry, 77. 345-394.
  3. David, W. P., Michelle, B., Zarin, B., Riccardo, C., Steven, C., Brian, C., Peter, H., David, K., Sarah, L., O’Connor, D., John, R., Carsten, S., Lauren, T., Simon, J. W., Roland, W. and Neil, J. P. (2014). The discovery of potent, orally bioavailable pyrazolo and triazolopyrimidine CXCR2 receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 24: 72-76.
  4. Ameen, A. A., Hoda, A. R. and Khadeja, M. A. (2017). Synthesis of novel 1, 2, 4-triazolopyrimidines and their evaluation as antimicrobial agents, Medicinal Chemistry Research, 26: 120-130.
  5. Mohamed, A. M., Al-Qalawi, H. R., El-Sayed, W. A., Arafa, W. A., Alhumaimess, M. S. and Hassan, A. K. (2015). Anticancer activity of newly synthesized triazolopyrimidine derivatives and their nucleoside analogs. Acta Poloniae Pharmaceutica, 72(2): 307-18.
  6. Chao-Nan, C., Li, L., Feng-Qin, J., Qiong, C., Hui, X., Cong-Wei, N., Zhen, X., Guang-Fu, Y. (2009). Design and synthesis of N-2,6-difluorophenyl-5-methoxyl-1,2,4-triazolo[1,5-a]-pyrimidine-2-sulfonamide as acetohydroxyacid synthase inhibitor. Bioorganic & Medicinal Chemistry, 17: 3011-3017.
  7. Matthias, N., Jean-Michel, A., Stefanie, B., Catarina, B., Jìrgen, F., Uwe, G., Sabine, G., Stephan, R., Benno, R., Sebastien, S., Franz, S., Tanja S. G. and Christoph U. (2016). Novel triazolopyrimidine-derived cannabinoid receptor 2 agonists as potential treatment for inflammatory kidney diseases. ChemMedChem, 11: 179-189.
  8. Chao-Nan, C., Qiong, C., Yu-Chao, L., Xiao-Lei, Z., Cong-Wei, N., Zhen, X. and Guang-Fu, Y. (2010). Syntheses and herbicidal activity of new triazolopyrimidine-2-sulfonamides as acetohydroxyacid synthase inhibitor. Bioorganic & Medicinal Chemistry, 18: 4897-4904.
  9. Probir, K. O. and Kunal, R. (2010). Chemometric modeling, docking and in silico design of triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors as antimalarials. European Journal of Medicinal Chemistry, 45: 4645-4656.
  10. Fei, Y., Ruifang, P., Dekai, Y., Meizi, H., Chunlei, Z., Shuguang, C. and Ming, Y. (2010). Design, synthesis, and biological evaluation of novel substituted [1,2,3]triazolo[4,5-d]pyrimidinesas HIV-1 Tat–TAR interaction inhibitors. Pure and Applied Chemistry, 82: 339-347.
  11. Said, A. S., Nermien, M. S. and Mohamed, M. A. (2009). Analgesic, anticonvulsant and anti-inflammatory activities of some synthesized benzodiazipine, triazolopyrimidine and bis-imide derivatives. European Journal of Medicinal Chemistry, 44: 4787-4792.
  12. Margaret, A. P., Ramesh, G., Nicholas, A. M., John, W., Farah, E. M., Jeffrey, B. and Pradipsinh, K. R. (2008). Triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors with potent and selective activity against the malaria parasite. Plasmodium falciparum. Journal of Medicinal Chemistry, 51: 3649-3653.
  13. Edison, S. Z., Aaron, K., Steven, M., Erik, J. H., Paul, L. O., Guillermo, C., Kallolmay, B., Naresh, K., Jeffrey, C., Thierry, M., Philip, A. H., Joshua O. and Tanya P. (2017). The synthesis and evaluation of triazolopyrimidines as anti-tubercular agents. Bioorganic & Medicinal Chemistry, 25: 3922-3946.
  14. Jitendra, K., Asim, G., Marziya, S., Anju, S., Ashutosh, S., Ehtesham, J., Nitin, S., Nirotpal, M., Nasimul, H. and Jayaram, B. (2018). Pyrimidine‐Triazolopyrimidine and Pyrimidine‐Pyridine Hybrids as Potential Acetylcholinesterase Inhibitors for Alzheimer's Disease. ChemistrySelect, 3: 736 –747.
  15. Sobhi, M. G., Thoraya, A. F., Eman, M. H. and Nadia, T. A. (2018). Terephthalaldehyde: An effecient key precursor for novel synthesis of some interesting bis-thiazoles and bis-triazolopyrimidinones. Journal of Heterocyclic Chemistry, 55: 750-755.
  16. Ghada, S. H., Magda, A. E., Mahmoud, B. E., Said, M. B., Azza, R. M., Farid, A. B. (2017). Synthesis and antitumor testing of certain new fused triazolopyrimidine and triazoloquinazoline derivatives. Arabian Journal of Chemistry, 10: S1345-S1355.
  17. Ehtesham, J., Poonam, M., Mudasir, M., Jitendra, K., Waqar, A., Syed, M., Manisha, T., Nasimul, H. and Jayaram B. (2017). Rational design, synthesis and biological screening of triazine-triazolopyrimidine hybrids as multitarget anti-Alzheimer agents. European Journal of Medicinal Chemistry, 136: 36-51.
  18. Margaret, A. P., Karen, L. W., Sreekanth, K., Xiaoyi, D., John, W., David, W., Michael, J. P., Pradipsinh, K. R. and Susan, A. C. (2016). A triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with improved drug-like properties for treatment and prevention of malaria. ACS Infectious Diseases, 2: 945-957.
  19. Jitendra, K., Poonam, M., Anju, S., Ehtesham, J., Mudasir, M., Mohammad, M., Ashutosh, S., Manisha, T., Nasimul, H. and Jayaram B. (2016). Synthesis and screening of triazolopyrimidine scaffold as multifunctional agents for Alzheimer's disease therapies. European Journal of Medicinal Chemistry, 119: 260-277.
  20. Sreekanth, K., Xiaoyi, D., Karen, L. W., Jose, M. C., Maria, M., John, W., Farah, E. M., Diana, R. T., Krishne, M., Kakali, R. R., Gong, C., Santiago, F. B., Iñigo, A. B., David, W., Susan, A. C., and Pradipsinh K. R. (2016). Tetrahydro-2-naphthyl and 2-indanyl triazolopyrimidines targeting plasmodium falciparum dihydroorotate dehydrogenase display potent and selective antimalarial activity. Journal of Medicinal Chemistry, 59: 5416-5431.
  21. Asier, G., Ana, M., Leen, D., Alfonso P., Siti, N. A., Rana, A., Pieter, L., Lisa, F. P., Gilles, Q., Johan, N. and María, P. (2018). Inhibition of the replication of different strains of chikungunya virus by 3-aryl-[1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones. ACS Infectious Diseases, 4: 605-619.
  22. Mehdi, B., Mohammad, R., Ali, S., Marzieh, A, Hoda, A. –M. and Mohsen N. (2011). Synthesis of new derivatives of 3-aryl-1,5-dimethyl-1h-[1,2,4]triazolo[40,30:1,2]pyrimido[4,5-e][1,3,4]oxadiazines as potential antiproliferative agents, Journal of Heterocyclic Chemistry, 48: 183-186.
  23. Fakher, C., Mehdi, M., Hédi, B. M., Leila, C. –G. and Mansour S. (2007). Synthesis and antigenotoxic activity of some naphtho[2,1-b]pyrano[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives, European Journal of Medicinal Chemistry, 42: 715-718.
  24. Takashi, O., Yasuhisa, K., Kinji, H., Hiroshi, N. and Yoshimitsu N. (2004). Facile synthesis of fused 1,2,4-triazolo[1,5-c]pyrimidine derivatives as human adenosine A3 receptor ligands, Bioorganic & Medicinal Chemistry Letters, 14: 2443-2446.

Downloads

Published

2018-10-30

Issue

Section

Research Articles

How to Cite

[1]
Jayanti S. Rajora, " Development of Newer Bioactive Triazolopyrimidines , International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 4, Issue 10, pp.599-606, September-October-2018.